Abstract
Our prior studies have shown that protein misfolding and aggregation in the placenta are linked to the development of preeclampsia, a severe pregnancy complication. We identified transthyretin (TTR) as a key component of the aggregated protein complex. However, the regulation of native TTR in normal pregnancy remains unclear. In this study, we found that pregnant mice exhibited a remarkable and progressive decline in serum TTR levels through gestational day (gd) 12–14, followed by an increase in late pregnancy and postpartum. Meanwhile, serum albumin levels showed a modest but statistically significant increase throughout gestation. TTR protein and mRNA levels in the liver, a primary source of circulating TTR, mirrored the changes observed in serum TTR levels during gestation. Intriguingly, a similar pattern of TTR alteration was also observed in the serum of pregnant women and pregnant interleukin-10-knockout (IL-10−/−) mice with high inflammation background. In non-pregnant IL-10−/− mice, serum TTR levels were significantly lower than those in age-matched wild-type mice. Administration of IL-10 to non-pregnant IL-10−/− mice restored their serum TTR levels. Notably, dysregulation of TTR resulted in fewer implantation units, lower fetal weight, and smaller litter sizes in human TTR-overexpressing transgenic mice. Thus, TTR may play a pivotal role as a crucial regulator in normal pregnancy, and inflammation during pregnancy may contribute to the downregulation of serum TTR presence.
Original language | English (US) |
---|---|
Article number | 1048 |
Journal | Biology |
Volume | 12 |
Issue number | 8 |
DOIs | |
State | Published - Aug 2023 |
Externally published | Yes |
Keywords
- IL-10
- IL-10 knockout mice
- liver
- placenta
- pregnancy
- protein aggregation
- transthyretin
ASJC Scopus subject areas
- General Biochemistry, Genetics and Molecular Biology
- General Immunology and Microbiology
- General Agricultural and Biological Sciences