TY - JOUR
T1 - Genetic control of predominantly error-free replication through an acrolein-derived minor-groove DNA adduct
AU - Yoon, Jung Hoon
AU - Hodge, Richard
AU - Hackfeld, Linda C.
AU - Park, Jeseong
AU - Choudhury, Jayati Roy
AU - Prakash, Satya
AU - Prakash, Louise
N1 - Publisher Copyright:
© 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
PY - 2018/2/23
Y1 - 2018/2/23
N2 - Acrolein, anα,β-unsaturated aldehyde, is generated in vivo as the end product of lipid peroxidation and from metabolic oxidation of polyamines, and it is a ubiquitous environmental pollutant. The reaction of acrolein with the N2 of guanine in DNA leads to the formation of γ-hydroxy-1-N2-propano-2′ deoxyguanosine (γ-HOPdG), which can exist inDNAin a ring-closed or a ring-opened form. Here, we identified the translesion synthesis (TLS) DNA polymerases (Pols) that conduct replication through the permanently ring-opened reduced form of γ-HOPdG ((r) γ-HOPdG) and show that replication through this adduct is mediated via Rev1/Polη-, Poli/Polκ-, and Polθ- dependent pathways, respectively. Based on biochemical and structural studies, we propose a role for Rev1 and Poli in inserting a nucleotide (nt) opposite the adduct and for Polsη and κ in extending synthesis from the inserted nt in the respective TLS pathway. Based on genetic analyses and biochemical studies with Polθ, we infer a role for Polθ at both the nt insertion and extension steps of TLS. Whereas purified Rev1 and Polθ primarily incorporate a C opposite (r)γ-HOPdG, Poli incorporates a C or a T opposite the adduct; nevertheless, TLS mediated by the Poli-dependent pathway as well as by other pathways occurs in a predominantly error-free manner in human cells. We discuss the implications of these observations for the mechanisms that could affect the efficiency and fidelity of TLS Pols.
AB - Acrolein, anα,β-unsaturated aldehyde, is generated in vivo as the end product of lipid peroxidation and from metabolic oxidation of polyamines, and it is a ubiquitous environmental pollutant. The reaction of acrolein with the N2 of guanine in DNA leads to the formation of γ-hydroxy-1-N2-propano-2′ deoxyguanosine (γ-HOPdG), which can exist inDNAin a ring-closed or a ring-opened form. Here, we identified the translesion synthesis (TLS) DNA polymerases (Pols) that conduct replication through the permanently ring-opened reduced form of γ-HOPdG ((r) γ-HOPdG) and show that replication through this adduct is mediated via Rev1/Polη-, Poli/Polκ-, and Polθ- dependent pathways, respectively. Based on biochemical and structural studies, we propose a role for Rev1 and Poli in inserting a nucleotide (nt) opposite the adduct and for Polsη and κ in extending synthesis from the inserted nt in the respective TLS pathway. Based on genetic analyses and biochemical studies with Polθ, we infer a role for Polθ at both the nt insertion and extension steps of TLS. Whereas purified Rev1 and Polθ primarily incorporate a C opposite (r)γ-HOPdG, Poli incorporates a C or a T opposite the adduct; nevertheless, TLS mediated by the Poli-dependent pathway as well as by other pathways occurs in a predominantly error-free manner in human cells. We discuss the implications of these observations for the mechanisms that could affect the efficiency and fidelity of TLS Pols.
UR - http://www.scopus.com/inward/record.url?scp=85042360899&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85042360899&partnerID=8YFLogxK
U2 - 10.1074/jbc.RA117.000962
DO - 10.1074/jbc.RA117.000962
M3 - Article
C2 - 29330301
AN - SCOPUS:85042360899
SN - 0021-9258
VL - 293
SP - 2949
EP - 2958
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 8
ER -