TY - JOUR
T1 - Genetic and Transcriptional Regulatory Mechanisms of Lipase Activity in the Plant Pathogenic Fungus Fusarium graminearum
AU - Kim, Sieun
AU - Lee, Juno
AU - Park, Jiyeun
AU - Choi, Soyoung
AU - Bui, Duc Cuong
AU - Kim, Jung Eun
AU - Shin, Jiyoung
AU - Kim, Hun
AU - Choi, Gyung Ja
AU - Lee, Yin Won
AU - Chang, Pahn Shick
AU - Son, Hokyoung
N1 - Publisher Copyright:
Copyright © 2023 Kim et al.
PY - 2023/5
Y1 - 2023/5
N2 - Lipases, which catalyze the hydrolysis of long-chain triglycerides, diglycerides, and monoglycerides into free fatty acids and glycerol, participate in various biological pathways in fungi. In this study, we examined the biological functions and regulatory mechanisms of fungal lipases via two approaches. First, we performed a systemic functional characterization of 86 putative lipase-encoding genes in the plant-pathogenic fungus Fusarium graminearum. The phenotypes were assayed for vegetative growth, asexual and sexual reproduction, stress responses, pathogenicity, mycotoxin production, and lipase activity. Most mutants were normal in the assessed phenotypes, implying overlapping roles for lipases in F. graminearum. In particular, FgLip1 and Fgl1 were revealed as core extracellular lipases in F. graminearum. Second, we examined the lipase activity of previously constructed transcription factor (TF) mutants of F. graminearum and identified three TFs and one histone acetyltransferase that significantly affect lipase activity. The relative transcript levels of FgLIP1 and FGL1 were markedly reduced or enhanced in these TF mutants. Among them, Gzzc258 was identified as a key lipase regulator that is also involved in the induction of lipase activity during sexual reproduction. To our knowledge, this study is the first comprehensive functional analysis of fungal lipases and provides significant insights into the genetic and regulatory mechanisms underlying lipases in fungi. IMPORTANCE Fusarium graminearum is an economically important plant-pathogenic fungus that causes Fusarium head blight (FHB) on wheat and barley. Here, we constructed a gene knockout mutant library of 86 putative lipase-encoding genes and established a comprehensive phenotypic database of the mutants. Among them, we found that FgLip1 and Fgl1 act as core extracellular lipases in this pathogen. Moreover, several putative transcription factors (TFs) that regulate the lipase activities in F. graminearum were identified. The disruption mutants of F. graminearum-lipase regulatory TFs all showed defects in sexual reproduction, which implies a strong relationship between sexual development and lipase activity in this fungus. These findings provide valuable insights into the genetic mechanisms regulating lipase activity as well as its importance to the developmental stages of this plant-pathogenic fungus.
AB - Lipases, which catalyze the hydrolysis of long-chain triglycerides, diglycerides, and monoglycerides into free fatty acids and glycerol, participate in various biological pathways in fungi. In this study, we examined the biological functions and regulatory mechanisms of fungal lipases via two approaches. First, we performed a systemic functional characterization of 86 putative lipase-encoding genes in the plant-pathogenic fungus Fusarium graminearum. The phenotypes were assayed for vegetative growth, asexual and sexual reproduction, stress responses, pathogenicity, mycotoxin production, and lipase activity. Most mutants were normal in the assessed phenotypes, implying overlapping roles for lipases in F. graminearum. In particular, FgLip1 and Fgl1 were revealed as core extracellular lipases in F. graminearum. Second, we examined the lipase activity of previously constructed transcription factor (TF) mutants of F. graminearum and identified three TFs and one histone acetyltransferase that significantly affect lipase activity. The relative transcript levels of FgLIP1 and FGL1 were markedly reduced or enhanced in these TF mutants. Among them, Gzzc258 was identified as a key lipase regulator that is also involved in the induction of lipase activity during sexual reproduction. To our knowledge, this study is the first comprehensive functional analysis of fungal lipases and provides significant insights into the genetic and regulatory mechanisms underlying lipases in fungi. IMPORTANCE Fusarium graminearum is an economically important plant-pathogenic fungus that causes Fusarium head blight (FHB) on wheat and barley. Here, we constructed a gene knockout mutant library of 86 putative lipase-encoding genes and established a comprehensive phenotypic database of the mutants. Among them, we found that FgLip1 and Fgl1 act as core extracellular lipases in this pathogen. Moreover, several putative transcription factors (TFs) that regulate the lipase activities in F. graminearum were identified. The disruption mutants of F. graminearum-lipase regulatory TFs all showed defects in sexual reproduction, which implies a strong relationship between sexual development and lipase activity in this fungus. These findings provide valuable insights into the genetic mechanisms regulating lipase activity as well as its importance to the developmental stages of this plant-pathogenic fungus.
KW - Fusarium graminearum
KW - lipases
KW - transcription factors
UR - http://www.scopus.com/inward/record.url?scp=85163914072&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85163914072&partnerID=8YFLogxK
U2 - 10.1128/spectrum.05285-22
DO - 10.1128/spectrum.05285-22
M3 - Article
C2 - 37093014
AN - SCOPUS:85163914072
SN - 2165-0497
VL - 11
JO - Microbiology Spectrum
JF - Microbiology Spectrum
IS - 3
ER -