Generalized Nonparametric Composite Tests for High-Dimensional Data

Xiaoli Kong, Alejandro Villasante-Tezanos, Solomon W. Harrar

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper, composite high-dimensional nonparametric tests for two samples are proposed, by using component-wise Wilcoxon–Mann–Whitney-type statistics. No distributional assumption, moment condition, or parametric model is required for the development of the tests and the theoretical results. Two approaches are employed, for estimating the asymptotic variance of the composite statistic, leading to two tests. In both cases, banding of the covariance matrix to estimate variance of the test statistic is involved. An adaptive algorithm, for selecting the banding window width, is proposed. Numerical studies are provided, to show the favorable performance of the new tests in finite samples and under varying degrees of dependence.

Original languageEnglish (US)
Article number1153
JournalSymmetry
Volume14
Issue number6
DOIs
StatePublished - Jun 2022

Keywords

  • Wilcoxon–Mann–Whitney
  • high dimension
  • nonparametric
  • two-sample test
  • α-mixing

ASJC Scopus subject areas

  • Computer Science (miscellaneous)
  • Chemistry (miscellaneous)
  • General Mathematics
  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Generalized Nonparametric Composite Tests for High-Dimensional Data'. Together they form a unique fingerprint.

Cite this