Abstract
Zika virus (ZIKV) infection causes devastating congenital abnormities and Guillain-Barré syndrome. The ZIKV envelope (E) protein is responsible for viral entry and represents a major determinant for viral pathogenesis. Like other flaviviruses, the ZIKV E protein is glycosylated at amino acid N154. To study the function of E glycosylation, we generated a recombinant N154Q ZIKV that lacks the E glycosylation and analyzed the mutant virus in mammalian and mosquito hosts. In mouse models, the mutant was attenuated, as evidenced by lower viremia, decreased weight loss, and no mortality; however, knockout of E glycosylation did not significantly affect neurovirulence. Mice immunized with the mutant virus developed a robust neutralizing antibody response and were completely protected from wild-type ZIKV challenge. In mosquitoes, the mutant virus exhibited diminished oral infectivity for the Aedes aegypti vector. Collectively, the results demonstrate that E glycosylation is critical for ZIKV infection of mammalian and mosquito hosts. Zika virus (ZIKV) causes devastating congenital abnormities and Guillain-Barré syndrome. Fontes-Garfias et al. showed that the glycosylation of ZIKV envelope protein plays an important role in infecting mosquito vectors and pathogenesis in mouse.
Original language | English (US) |
---|---|
Pages (from-to) | 1180-1190 |
Number of pages | 11 |
Journal | Cell Reports |
Volume | 21 |
Issue number | 5 |
DOIs | |
State | Published - Oct 31 2017 |
Keywords
- Zika virus
- flavivirus entry
- glycosylation
- mosquito transmission
- vaccine
ASJC Scopus subject areas
- General Biochemistry, Genetics and Molecular Biology