TY - JOUR
T1 - Force field-dependent solution properties of glycine oligomers
AU - Drake, Justin A.
AU - Pettitt, B. Montgomery
N1 - Publisher Copyright:
© 2015 Wiley Periodicals, Inc.
PY - 2015/6/1
Y1 - 2015/6/1
N2 - Molecular simulations can be used to study disordered polypeptide systems and to generate hypotheses on the underlying structural and thermodynamic mechanisms that govern their function. As the number of disordered protein systems investigated with simulations increase, it is important to understand how particular force fields affect the structural properties of disordered polypeptides in solution. To this end, we performed a comparative structural analysis of Gly3 and Gly10 in aqueous solution from all atom, microsecond molecular dynamics (MD) simulations using the CHARMM 27 (C27), CHARMM 36 (C36), and Amber ff12SB force fields. For each force field, Gly3 and Gly10 were simulated for at least 300 ns and 1 μs, respectively. Simulating oligoglycines of two different lengths allows us to evaluate how force field effects depend on polypeptide length. Using a variety of structural metrics (e.g., end-to-end distance, radius of gyration, dihedral angle distributions), we characterize the distribution of oligoglycine conformers for each force field and show that each sample conformation space differently, yielding considerably different structural tendencies of the same oligoglycine model in solution. Notably, we find that C36 samples more extended oligoglycine structures than both C27 and ff12SB.
AB - Molecular simulations can be used to study disordered polypeptide systems and to generate hypotheses on the underlying structural and thermodynamic mechanisms that govern their function. As the number of disordered protein systems investigated with simulations increase, it is important to understand how particular force fields affect the structural properties of disordered polypeptides in solution. To this end, we performed a comparative structural analysis of Gly3 and Gly10 in aqueous solution from all atom, microsecond molecular dynamics (MD) simulations using the CHARMM 27 (C27), CHARMM 36 (C36), and Amber ff12SB force fields. For each force field, Gly3 and Gly10 were simulated for at least 300 ns and 1 μs, respectively. Simulating oligoglycines of two different lengths allows us to evaluate how force field effects depend on polypeptide length. Using a variety of structural metrics (e.g., end-to-end distance, radius of gyration, dihedral angle distributions), we characterize the distribution of oligoglycine conformers for each force field and show that each sample conformation space differently, yielding considerably different structural tendencies of the same oligoglycine model in solution. Notably, we find that C36 samples more extended oligoglycine structures than both C27 and ff12SB.
KW - intrinsically disordered proteins
KW - peptide solution
UR - http://www.scopus.com/inward/record.url?scp=84930506534&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84930506534&partnerID=8YFLogxK
U2 - 10.1002/jcc.23934
DO - 10.1002/jcc.23934
M3 - Article
C2 - 25952623
AN - SCOPUS:84930506534
SN - 0192-8651
VL - 36
SP - 1275
EP - 1285
JO - Journal of Computational Chemistry
JF - Journal of Computational Chemistry
IS - 17
ER -