Fluorescent probes for tracking the transfer of iron-sulfur cluster and other metal cofactors in biosynthetic reaction pathways

James N. Vranish, William K. Russell, Lusa E. Yu, Rachael M. Cox, David H. Russell, David P. Barondeau

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Iron-sulfur (Fe-S) clusters are protein cofactors that are constructed and delivered to target proteins by elaborate biosynthetic machinery. Mechanistic insights into these processes have been limited by the lack of sensitive probes for tracking Fe-S cluster synthesis and transfer reactions. Here we present fusion protein- and intein-based fluorescent labeling strategies that can probe Fe-S cluster binding. The fluorescence is sensitive to different cluster types ([2Fe-2S] and [4Fe-4S] clusters), ligand environments ([2Fe-2S] clusters on Rieske, ferredoxin (Fdx), and glutaredoxin), and cluster oxidation states. The power of this approach is highlighted with an extreme example in which the kinetics of Fe-S cluster transfer reactions are monitored between two Fdx molecules that have identical Fe-S spectroscopic properties. This exchange reaction between labeled and unlabeled Fdx is catalyzed by dithiothreitol (DTT), a result that was confirmed by mass spectrometry. DTT likely functions in a ligand substitution reaction that generates a [2Fe-2S]-DTT species, which can transfer the cluster to either labeled or unlabeled Fdx. The ability to monitor this challenging cluster exchange reaction indicates that real-time Fe-S cluster incorporation can be tracked for a specific labeled protein in multicomponent assays that include several unlabeled Fe-S binding proteins or other chromophores. Such advanced kinetic experiments are required to untangle the intricate networks of transfer pathways and the factors affecting flux through branch points. High sensitivity and suitability with high-throughput methodology are additional benefits of this approach. We anticipate that this cluster detection methodology will transform the study of Fe-S cluster pathways and potentially other metal cofactor biosynthetic pathways.

Original languageEnglish (US)
Pages (from-to)390-398
Number of pages9
JournalJournal of the American Chemical Society
Volume137
Issue number1
DOIs
StatePublished - Jan 14 2015
Externally publishedYes

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Fluorescent probes for tracking the transfer of iron-sulfur cluster and other metal cofactors in biosynthetic reaction pathways'. Together they form a unique fingerprint.

Cite this