TY - JOUR
T1 - Fetal exposure to bisphenol A as a risk factor for the development of childhood asthma
T2 - An animal model study
AU - Nakajima, Yoichi
AU - Goldblum, Randall M.
AU - Midoro-Horiuti, Terumi
N1 - Funding Information:
Supported by ES016428 (TMH) from National Institute of Environmental Health Science (NIEHS), and pilot projects (TMH) from the NIEHS Center Grant P30 ES006676 and 1UL1RR029876-01 from the National Center for Research Resources, NIH. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Disclosure of potential conflict of interest: The authors have attested they have no conflict of interest.
PY - 2012
Y1 - 2012
N2 - Background: The prevalence of asthma in industrialized countries has been increasing dramatically and asthma is now the most common chronic disease of children in the United States. The rapidity of the increase strongly suggests that changes in environmental exposures are the likely cause of this epidemic. Further, the early onset of allergic manifestations suggests that these exposures may act on the prenatal development of the immune system. We have focused on the potential effects of bisphenol A (BPA), a chemical pollutant with one of the largest productions, on the development of childhood asthma. We have reported that perinatal BPA exposure promotes the development of allergic asthma in a mouse model. The current study was designed to identify a critical period of BPA exposure and to begin elucidating the mechanisms for this susceptibility. Methods. Female BALB/c mice received 10 micro g/ml BPA in their drinking water from one week before pregnancy until the end of the study. Some of the pups were transferred in the first 48 h of life from their BPA-loaded mother to an unexposed mother, or vice versa. Half of the pups were sensitized with a low dose of the experimental allergen ovalbumin (OVA), the rest received PBS as an unsensitized controls. On day 22, the pups were challenged by inhalations of ovalbumin or PBS followed by quantification of eosinophils in and hyperreactivity of their airways, major indicators of experimental asthma in this classical mouse model. Hepatic expression of two isoforms of UDP-glucuronosyltransferase (Ugt) was quantified by quantitative RT-PCR at various ages. Results: Pups exposed to BPA in utero and through breast milk, or in utero only, displayed an asthma phenotype in response to their "suboptimal" allergic sensitization, whereas, pups only exposed to BPA postnatally from breast milk, did not. The expression of Ugt2b1, an isoform related to BPA clearance in rats, was not detectable in mouse fetuses and newborn pups, but increased by day 5 and approached adult levels by day 25. Conclusions: Prenatal exposures that produce environmentally relevant burdens of BPA, followed by postnatal allergic sensitization and challenges, promote the development of experimental allergic asthma. Delayed expression of BPA-metabolizing enzymes may explain, at least in part, the enhanced fetal susceptibility to this common environmental contaminant.
AB - Background: The prevalence of asthma in industrialized countries has been increasing dramatically and asthma is now the most common chronic disease of children in the United States. The rapidity of the increase strongly suggests that changes in environmental exposures are the likely cause of this epidemic. Further, the early onset of allergic manifestations suggests that these exposures may act on the prenatal development of the immune system. We have focused on the potential effects of bisphenol A (BPA), a chemical pollutant with one of the largest productions, on the development of childhood asthma. We have reported that perinatal BPA exposure promotes the development of allergic asthma in a mouse model. The current study was designed to identify a critical period of BPA exposure and to begin elucidating the mechanisms for this susceptibility. Methods. Female BALB/c mice received 10 micro g/ml BPA in their drinking water from one week before pregnancy until the end of the study. Some of the pups were transferred in the first 48 h of life from their BPA-loaded mother to an unexposed mother, or vice versa. Half of the pups were sensitized with a low dose of the experimental allergen ovalbumin (OVA), the rest received PBS as an unsensitized controls. On day 22, the pups were challenged by inhalations of ovalbumin or PBS followed by quantification of eosinophils in and hyperreactivity of their airways, major indicators of experimental asthma in this classical mouse model. Hepatic expression of two isoforms of UDP-glucuronosyltransferase (Ugt) was quantified by quantitative RT-PCR at various ages. Results: Pups exposed to BPA in utero and through breast milk, or in utero only, displayed an asthma phenotype in response to their "suboptimal" allergic sensitization, whereas, pups only exposed to BPA postnatally from breast milk, did not. The expression of Ugt2b1, an isoform related to BPA clearance in rats, was not detectable in mouse fetuses and newborn pups, but increased by day 5 and approached adult levels by day 25. Conclusions: Prenatal exposures that produce environmentally relevant burdens of BPA, followed by postnatal allergic sensitization and challenges, promote the development of experimental allergic asthma. Delayed expression of BPA-metabolizing enzymes may explain, at least in part, the enhanced fetal susceptibility to this common environmental contaminant.
KW - Animal model
KW - Asthma
KW - BPA
KW - Bisphenol A
KW - Environmental estrogen
KW - Enzyme
KW - Fetal exposure
KW - Metabolism
KW - Ovalbumin
KW - Ugt2b1
UR - http://www.scopus.com/inward/record.url?scp=84858692046&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84858692046&partnerID=8YFLogxK
U2 - 10.1186/1476-069X-11-8
DO - 10.1186/1476-069X-11-8
M3 - Review article
C2 - 22353195
AN - SCOPUS:84858692046
SN - 1476-069X
VL - 11
JO - Environmental Health: A Global Access Science Source
JF - Environmental Health: A Global Access Science Source
IS - 1
M1 - 8
ER -