TY - JOUR
T1 - Extending the translational potential of targeting NO/cGMP-regulated pathways in the CVS
AU - Papapetropoulos, Andreas
AU - Hobbs, Adrian J.
AU - Topouzis, Stavros
N1 - Publisher Copyright:
© 2014 The British Pharmacological Society.
PY - 2015/3
Y1 - 2015/3
N2 - The discovery of NO as both an endogenous signalling molecule and as a mediator of the cardiovascular effects of organic nitrates was acknowledged in 1998 by the Nobel Prize in Physiology/Medicine. The characterization of its downstream signalling, mediated through stimulation of soluble GC (sGC) and cGMP generation, initiated significant translational interest, but until recently this was almost exclusively embodied by the use of PDE5 inhibitors in erectile dysfunction. Since then, research progress in two areas has contributed to an impressive expansion of the therapeutic targeting of the NO-sGC-cGMP axis: first, an increased understanding of the molecular events operating within this complex pathway and second, a better insight into its dys-regulation and uncoupling in human disease. Already-approved PDE5 inhibitors and novel, first-in-class molecules, which up-regulate the activity of sGC independently of NO and/or of the enzyme's haem prosthetic group, are undergoing clinical evaluation to treat pulmonary hypertension and myocardial failure. These molecules, as well as combinations or second-generation compounds, are also being assessed in additional experimental disease models and in patients in a wide spectrum of novel indications, such as endotoxic shock, diabetic cardiomyopathy and Becker's muscular dystrophy. There is well-founded optimism that the modulation of the NO-sGC-cGMP pathway will sustain the development of an increasing number of successful clinical candidates for years to come.
AB - The discovery of NO as both an endogenous signalling molecule and as a mediator of the cardiovascular effects of organic nitrates was acknowledged in 1998 by the Nobel Prize in Physiology/Medicine. The characterization of its downstream signalling, mediated through stimulation of soluble GC (sGC) and cGMP generation, initiated significant translational interest, but until recently this was almost exclusively embodied by the use of PDE5 inhibitors in erectile dysfunction. Since then, research progress in two areas has contributed to an impressive expansion of the therapeutic targeting of the NO-sGC-cGMP axis: first, an increased understanding of the molecular events operating within this complex pathway and second, a better insight into its dys-regulation and uncoupling in human disease. Already-approved PDE5 inhibitors and novel, first-in-class molecules, which up-regulate the activity of sGC independently of NO and/or of the enzyme's haem prosthetic group, are undergoing clinical evaluation to treat pulmonary hypertension and myocardial failure. These molecules, as well as combinations or second-generation compounds, are also being assessed in additional experimental disease models and in patients in a wide spectrum of novel indications, such as endotoxic shock, diabetic cardiomyopathy and Becker's muscular dystrophy. There is well-founded optimism that the modulation of the NO-sGC-cGMP pathway will sustain the development of an increasing number of successful clinical candidates for years to come.
UR - http://www.scopus.com/inward/record.url?scp=84923804984&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84923804984&partnerID=8YFLogxK
U2 - 10.1111/bph.12980
DO - 10.1111/bph.12980
M3 - Review article
C2 - 25302549
AN - SCOPUS:84923804984
SN - 0007-1188
VL - 172
SP - 1397
EP - 1414
JO - British Journal of Pharmacology
JF - British Journal of Pharmacology
IS - 6
ER -