Abstract
The Positive Transcriptional Elongation Factor b (P-TEFb), a heterodimer of CDK9 and Cyclin T1, is widely implicated in control of basal gene expression. Here, P-TEFb is involved in transitioning paused RNA polymerase II to enter productive transcriptional elongation mode by phosphorylating negative elongation factors and Ser2 of the heptad repeat in the RNA Pol II COOH terminal domain (CTD). This perspective will examine recent work in two unrelated inducible signaling pathways that illustrate the central role of P-TEFb in mediating cytokine inducible transcription networks. Specifically, P-TEFb has been recently discovered to play a key role in TNF-inducible NFκB activation and IL-6-inducible STAT3 signaling. In these signaling cascades, P-TEFb forms protein complexes with the activated nuclear RelA and STAT3 transcription factor in the cellular nucleoplasm, an association important for P-TEFb's promoter targeting. Studies using siRNA-mediated knockdown and/or selective CDK inhibitors show that P-TEFb plays a functional role in activation of a subset of NFκB-dependent targets and all STAT3-dependent genes studied to date. Interestingly, cytokine inducible genes that are sensitive to P-TEFb inhibition share an induction mechanism requiring inducible RNA Pol II recruitment. Chromatin immunoprecipitation studies have preliminarily indicated that this recruitment is dependent on CDK enzymatic activity. The potential of inhibiting P-TEFb as an anti-inflammatory therapy in innate immunity and systemic inflammation will be discussed.
Original language | English (US) |
---|---|
Pages (from-to) | 2661-2666 |
Number of pages | 6 |
Journal | Cell Cycle |
Volume | 7 |
Issue number | 17 |
DOIs | |
State | Published - Sep 1 2008 |
Keywords
- Cyclin dependent kinases (CDK)
- Inflammation
- NFκB
- PTEF-b
- STAT3
ASJC Scopus subject areas
- Molecular Biology
- Developmental Biology
- Cell Biology