TY - JOUR
T1 - Epoxyeicosatrienoic acids increase intracellular calcium concentration in vascular smooth muscle cells
AU - Fang, Xiang
AU - Weintraub, Neal L.
AU - Stoll, Lynn L.
AU - Spector, Arthur A.
PY - 1999/12
Y1 - 1999/12
N2 - Epoxyeicosatrienoic acids (EETs) are cytochrome P450-derived metabolites of arachidonic acid. They are potent endogenous vasodilator compounds produced by vascular cells, and EET-induced vasodilation has been attributed to activation of vascular smooth muscle cell (SMC) K+ channels. However, in some cells, EETs activate Ca2+ channels, resulting in Ca2+ influx and increased intracellular Ca2+ concentration ([Ca2+](i)). We investigated whether EETs also can activate Ca2+ channels in vascular SMC and whether the resultant Ca2+ influx can influence vascular tone. The 4 EET regioisomers (1 μmol/L) increased-porcine aortic SMC [Ca2+](i) by 52% to 81%, whereas arachidonic acid, dihydroxyeicosatrienoic acids, and 15- hydroxyeicosatetraenoic acid (1 μmol/L) produced little effect. The increases in [Ca2+](i) produced by 14,15-EET were abolished by removal of extracellular Ca2+ and by pretreatment with verapamil (10 μmol/L), an inhibitor of voltage-dependent (L-type) Ca2+ channels. 14,15-EET did not alter Ca2+ signaling induced by norepinephrine and thapsigargin. When administered to porcine coronary artery rings precontracted with a thromboxane mimetic, 14,15-EET produced relaxation. However, when administered to rings precontracted with acetylcholine or KCl, 14,15-EET produced additional contractions. In rings exposed to 10 mmol/L KCl, a concentration that did not affect resting ring tension, 14,15-EET produced small contractions that were abolished by EGTA (3 mmol/L) or verapamil (10 μmol/L). These observations indicate that 14,15-EET enhances [Ca2+](i) influx in vascular SMC through voltage-dependent Ca2+ channels. This 14,15- EET-induced increase in [Ca(i)2+] can produce vasoconstriction and therefore may act to modulate EET-induced vasorelaxation.
AB - Epoxyeicosatrienoic acids (EETs) are cytochrome P450-derived metabolites of arachidonic acid. They are potent endogenous vasodilator compounds produced by vascular cells, and EET-induced vasodilation has been attributed to activation of vascular smooth muscle cell (SMC) K+ channels. However, in some cells, EETs activate Ca2+ channels, resulting in Ca2+ influx and increased intracellular Ca2+ concentration ([Ca2+](i)). We investigated whether EETs also can activate Ca2+ channels in vascular SMC and whether the resultant Ca2+ influx can influence vascular tone. The 4 EET regioisomers (1 μmol/L) increased-porcine aortic SMC [Ca2+](i) by 52% to 81%, whereas arachidonic acid, dihydroxyeicosatrienoic acids, and 15- hydroxyeicosatetraenoic acid (1 μmol/L) produced little effect. The increases in [Ca2+](i) produced by 14,15-EET were abolished by removal of extracellular Ca2+ and by pretreatment with verapamil (10 μmol/L), an inhibitor of voltage-dependent (L-type) Ca2+ channels. 14,15-EET did not alter Ca2+ signaling induced by norepinephrine and thapsigargin. When administered to porcine coronary artery rings precontracted with a thromboxane mimetic, 14,15-EET produced relaxation. However, when administered to rings precontracted with acetylcholine or KCl, 14,15-EET produced additional contractions. In rings exposed to 10 mmol/L KCl, a concentration that did not affect resting ring tension, 14,15-EET produced small contractions that were abolished by EGTA (3 mmol/L) or verapamil (10 μmol/L). These observations indicate that 14,15-EET enhances [Ca2+](i) influx in vascular SMC through voltage-dependent Ca2+ channels. This 14,15- EET-induced increase in [Ca(i)2+] can produce vasoconstriction and therefore may act to modulate EET-induced vasorelaxation.
KW - Calcium channels
KW - Endothelium-derived factor
KW - Epoxyeicosatrienoic acid
KW - Vasoconstriction
KW - Vasorelaxation
UR - http://www.scopus.com/inward/record.url?scp=0033430231&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033430231&partnerID=8YFLogxK
U2 - 10.1161/01.HYP.34.6.1242
DO - 10.1161/01.HYP.34.6.1242
M3 - Article
C2 - 10601125
AN - SCOPUS:0033430231
SN - 0194-911X
VL - 34
SP - 1242
EP - 1246
JO - Hypertension
JF - Hypertension
IS - 6
ER -