Abstract
The prototypic second messenger cyclic AMP (cAMP) is essential for controlling cellular metabolism, including glucose and lipid homeostasis. In mammals, the majority of cAMP functions are mediated by cAMP-dependent protein kinase (PKA)and exchange proteins directly activated by cAMP (Epacs). To explore the physiological functions of Epac1, we generated Epac1 knockout mice. Here we report that Epac1 null mutants have reduced white adipose tissue and reduced plasma leptin levels but display heightened leptin sensitivity. Epac1-deficient mice are more resistant to high-fat diet-induced obesity, hyperleptinemia, and glucose intolerance. Furthermore, pharmacological inhibition of Epac by use of an Epac-specificinhibitor reduces plasma leptin levels in vivo and enhances leptin signaling in organotypic hypothalamic slices. Taken together, our results demonstrate that Epac1 plays an important role in regulating adiposity and energy balance.
Original language | English (US) |
---|---|
Pages (from-to) | 918-926 |
Number of pages | 9 |
Journal | Molecular and cellular biology |
Volume | 33 |
Issue number | 5 |
DOIs | |
State | Published - Mar 2013 |
ASJC Scopus subject areas
- Molecular Biology
- Cell Biology