TY - JOUR
T1 - E6 proteins from low-risk human papillomavirus types 6 and 11 are able to protect keratinocytes from apoptosis via Bak degradation
AU - Underbrink, Michael P.
AU - Dupuis, Crystal
AU - Wang, Jia
AU - Tyring, Stephen K.
N1 - Publisher Copyright:
© 2016 The Authors.
PY - 2016/3
Y1 - 2016/3
N2 - Infection of epithelial surfaces with low-risk human papillomavirus (HPV) types 6 and 11 causes troublesome clinical diseases, such as recurrent respiratory papillomatosis, that carry a significant cost burden to the healthcare system. Despite this, less has been studied at the molecular level for the low-risk HPV types when compared with their high-risk counterparts. Recent studies have shown the ability of the HPV E6 protein to degrade the pro-apoptotic family member Bak in high-risk and betapapillomavirus HPV types, which confers a cytoprotective advantage on E6-expressing cells. It is unknown whether low-risk E6 expression disrupts the apoptosis pathway and confers a cytoprotective advantage as a result of Bak degradation. We tested the abilities of 6E6 and 11E6 to degrade Bak and protect keratinocytes from UV-initiated apoptosis. Both low-risk 6E6 and 11E6 proteins were able to degrade activated Bak following UV treatment of keratinocytes. The degradation of Bak in 6E6- and 11E6-expressing cells occurred through the proteasomal pathway, and protected them from apoptosis, specifically through the intrinsic pathway to the same extent as their high-risk HPV16 E6 counterpart. In conclusion, we have found a new, critical and conserved function of low-risk HPV E6 proteins, i.e. the ability to degrade Bak, which gives them a cytoprotective advantage over normal, uninfected cells by specifically disrupting the intrinsic pathway of apoptosis.
AB - Infection of epithelial surfaces with low-risk human papillomavirus (HPV) types 6 and 11 causes troublesome clinical diseases, such as recurrent respiratory papillomatosis, that carry a significant cost burden to the healthcare system. Despite this, less has been studied at the molecular level for the low-risk HPV types when compared with their high-risk counterparts. Recent studies have shown the ability of the HPV E6 protein to degrade the pro-apoptotic family member Bak in high-risk and betapapillomavirus HPV types, which confers a cytoprotective advantage on E6-expressing cells. It is unknown whether low-risk E6 expression disrupts the apoptosis pathway and confers a cytoprotective advantage as a result of Bak degradation. We tested the abilities of 6E6 and 11E6 to degrade Bak and protect keratinocytes from UV-initiated apoptosis. Both low-risk 6E6 and 11E6 proteins were able to degrade activated Bak following UV treatment of keratinocytes. The degradation of Bak in 6E6- and 11E6-expressing cells occurred through the proteasomal pathway, and protected them from apoptosis, specifically through the intrinsic pathway to the same extent as their high-risk HPV16 E6 counterpart. In conclusion, we have found a new, critical and conserved function of low-risk HPV E6 proteins, i.e. the ability to degrade Bak, which gives them a cytoprotective advantage over normal, uninfected cells by specifically disrupting the intrinsic pathway of apoptosis.
UR - http://www.scopus.com/inward/record.url?scp=84960376633&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84960376633&partnerID=8YFLogxK
U2 - 10.1099/jgv.0.000392
DO - 10.1099/jgv.0.000392
M3 - Article
C2 - 26743580
AN - SCOPUS:84960376633
SN - 0022-1317
VL - 97
SP - 715
EP - 724
JO - Journal of General Virology
JF - Journal of General Virology
IS - 3
ER -