Abstract
Chemokines mediate diverse functions from organogenesis to mobilizing leucocytes, and are unusual agonists for class-A GPCRs (G-protein-coupled receptors) because of their large size and multi-domain structure. The current model for receptor activation, which involves interactions between chemokine N-loop and receptor N-terminal residues (Site-I) and between chemokine N-terminal and receptor extracellular loop/transmembrane residues (Site-II), fails to describe differences in ligand/receptor selectivity and the activation of multiple signalling pathways. In the present study, we show in neutrophil-activating chemokine CXCL8 that the highly conserved GP (glycine-proline) motif located distal to both N-terminal and N-loop residues couples Site-I and Site-II interactions. GP mutants showed large differences from nativelike to complete loss of function that could not be correlated with the specific mutation, receptor affinity or subtype, or a specific signalling pathway. NMR studies indicated that the GP motif does not influence Site-I interactions, but molecular dynamics simulations suggested that this motif dictates substates of the CXCL8 conformational ensemble. We conclude that the GP motif enables diverse receptor functions by controlling cross-talk between Site-I and Site-II, and further propose that the repertoire of chemokine functions is best described by a conformational ensemble model in which a network of long-range coupled indirect interactions mediate receptor activity.
Original language | English (US) |
---|---|
Pages (from-to) | 241-251 |
Number of pages | 11 |
Journal | Biochemical Journal |
Volume | 456 |
Issue number | 2 |
DOIs | |
State | Published - Dec 1 2013 |
Keywords
- Chemokine
- Conformational ensemble
- G-proteincoupled receptor
- Long-range coupling
- Signalling
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology