Abstract
Endocannabinoid (eCB) signaling mediates short-term and long-term synaptic depression (LTD) in many brain areas. In the ventral tegmental area (VTA) and striatum, D2 dopamine receptors cooperate with group I metabotropic glutamate receptors (mGluRs) to induce eCB-mediated LTD of glutamatergic excitatory and GABAergic inhibitory (I-LTD) synaptic transmission. Because D2 receptors and group I mGluR agonists are capable of inducing the release of eCBs, the predominant hypothesis is that the cooperation between these receptors to induce eCB-mediated synaptic depression results from the combined activation of type I cannabinoid (CB1) receptors by the eCBs. By determining the downstream effectors for D2 receptor and group I mGluR activation in VTA dopamine neurons, we show that group I mGluR activation contributes to I-LTD induction by enhancing eCB release and CB 1 receptor activation. However, D2 receptor activation does not enhance CB1 receptor activation, but facilitates I-LTD induction via direct inhibition of cAMP-dependent protein kinase A (PKA) signaling. We further demonstrate that cAMP/PKA signaling pathway is the downstream effector for CB1 receptors and is required for eCB-mediated I-LTD induction. Our results suggest that D2 receptors and CB1 receptors target the same downstream effector cAMP/PKA signaling pathway to induce I-LTD and D2 receptor activation facilitates eCB-mediated I-LTD in dopamine neurons not by enhancing CB 1 receptor activation, but by enhancing its downstream effects.
Original language | English (US) |
---|---|
Pages (from-to) | 14018-14030 |
Number of pages | 13 |
Journal | Journal of Neuroscience |
Volume | 28 |
Issue number | 52 |
DOIs | |
State | Published - Dec 24 2008 |
Externally published | Yes |
Keywords
- cAMP/PKA
- Dopamine
- Endocannabinoid
- GABA
- Long-term depression
- Synaptic plasticity
ASJC Scopus subject areas
- General Neuroscience