Abstract
Regulatory T (T reg) cells developing in the thymus are essential to maintain tolerance and prevent fatal autoimmunity in mice and humans. Expression of the T reg lineage-defining transcription factor FoxP3 is critically dependent upon T cell receptor (TCR) and interleukin-2 (IL-2) signaling. Here, we report that ten-eleven translocation (Tet) enzymes, which are DNA demethylases, are required early during double-positive (DP) thymic T cell differentiation and prior to the upregulation of FoxP3 in CD4 single-positive (SP) thymocytes, to promote Treg differentiation. We show that Tet3 selectively controls the development of CD25− FoxP3lo CD4SP Treg cell precursors in the thymus and is critical for TCR-dependent IL-2 production, which drive chromatin remodeling at the FoxP3 locus as well as other Treg-effector gene loci in an autocrine/paracrine manner. Together, our results demonstrate a novel role for DNA demethylation in regulating the TCR response and promoting Treg cell differentiation. These findings highlight a novel epigenetic pathway to promote the generation of endogenous Treg cells for mitigation of autoimmune responses.
Original language | English (US) |
---|---|
Article number | e55543 |
Journal | EMBO reports |
Volume | 24 |
Issue number | 5 |
DOIs | |
State | Published - May 4 2023 |
Externally published | Yes |
Keywords
- DNA demethylation
- FoxP3
- IL-2
- Tet enzymes
- Treg development
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Genetics