TY - JOUR
T1 - Direction-dependent phasing of locomotor muscle activity is altered post-stroke
AU - Schindler-Ivens, Sheila
AU - Brown, David A.
AU - Brooke, John D.
PY - 2004/10
Y1 - 2004/10
N2 - A major contributor to impaired locomotion post-stroke is abnormal phasing of muscle activity. While inappropriate paretic muscle phasing adapts to changing body orientation, load, and speed, it remains unclear whether paretic muscle phasing adapts to reversal of locomotor direction. We examined muscle phasing in backward pedaling, a task that requires shifts in biarticular but not uniarticular muscle phasing relative to forward pedaling. We hypothesized that if paretic and neurologically intact muscle phasing adapt similarly, then paretic biarticular but not paretic uniarticular muscles would shift phasing in backward pedaling. Paretic and neurologically intact individuals pedaled forward and backward while recording electromyograms (EMGs) from vastus medialis (VM), soleus (SOL), reclus femoris (RF), semimembranosus (SM), and biceps femoris (BF). Changes in muscle phasing were assessed by comparing the probability of muscle activity in forward and backward pedaling throughout 18 pedaling cycles. Paretic uniarticular muscles (VM and SOL) showed phase-advanced activity in backward versus forward pedaling, whereas the corresponding neurologically intact muscles showed little to no phasing change. Paretic biarticular muscles were less likely than neurologically intact biarticular muscles to display phasing changes in backward pedaling. Paretic RF displayed no phase change during backward pedaling, and paretic BF displayed no consistent adaptation to backward pedaling. Paretic SM was the only muscle to display backward/forward phase changes that were similar to the neurologically intact group. We conclude that paretic uniarticular muscles are more susceptible and paretic biarticular muscles are less susceptible to direction-dependent phase shifts, consistent with altered sensory integration and impaired cortical control of locomotion.
AB - A major contributor to impaired locomotion post-stroke is abnormal phasing of muscle activity. While inappropriate paretic muscle phasing adapts to changing body orientation, load, and speed, it remains unclear whether paretic muscle phasing adapts to reversal of locomotor direction. We examined muscle phasing in backward pedaling, a task that requires shifts in biarticular but not uniarticular muscle phasing relative to forward pedaling. We hypothesized that if paretic and neurologically intact muscle phasing adapt similarly, then paretic biarticular but not paretic uniarticular muscles would shift phasing in backward pedaling. Paretic and neurologically intact individuals pedaled forward and backward while recording electromyograms (EMGs) from vastus medialis (VM), soleus (SOL), reclus femoris (RF), semimembranosus (SM), and biceps femoris (BF). Changes in muscle phasing were assessed by comparing the probability of muscle activity in forward and backward pedaling throughout 18 pedaling cycles. Paretic uniarticular muscles (VM and SOL) showed phase-advanced activity in backward versus forward pedaling, whereas the corresponding neurologically intact muscles showed little to no phasing change. Paretic biarticular muscles were less likely than neurologically intact biarticular muscles to display phasing changes in backward pedaling. Paretic RF displayed no phase change during backward pedaling, and paretic BF displayed no consistent adaptation to backward pedaling. Paretic SM was the only muscle to display backward/forward phase changes that were similar to the neurologically intact group. We conclude that paretic uniarticular muscles are more susceptible and paretic biarticular muscles are less susceptible to direction-dependent phase shifts, consistent with altered sensory integration and impaired cortical control of locomotion.
UR - http://www.scopus.com/inward/record.url?scp=4644250041&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=4644250041&partnerID=8YFLogxK
U2 - 10.1152/jn.01207.2003
DO - 10.1152/jn.01207.2003
M3 - Article
C2 - 15175363
AN - SCOPUS:4644250041
SN - 0022-3077
VL - 92
SP - 2207
EP - 2216
JO - Journal of neurophysiology
JF - Journal of neurophysiology
IS - 4
ER -