Dimerization and DNA-binding properties of the transcription factor ΔFosB

Helena J.M.M. Jorissen, Paula G. Ulery, Lisa Henry, Sreekrishna Gourneni, Eric J. Nestler, Gabby Rudenko

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

The transcription factor, ΔFosB, a splice isoform of fosB, accumulates in rodents in a brain-region-specific manner in response to chronic administration of drugs of abuse, stress, certain antipsychotic or antidepressant medications, electroconvulsive seizures, and certain lesions. Increasing evidence supports a functional role of such ΔFosB induction in animal models of several psychiatric and neurologic disorders. Fos family proteins, including ΔFosB, are known to heterodimerize with Jun family proteins to create active AP-1 transcription-factor complexes, which bind to DNA specifically at AP-1 consensus sites. We show here, using a range of biochemical and biophysical means, that recombinant, purified ΔFosB forms homodimers as well, at concentrations less than 500 nM, and that these homodimers specifically bind to DNA oligonucleotides containing AP-1 consensus sequences in the absence of any Jun partner. Our results suggest that, as ΔFosB accumulates to abnormally elevated protein levels in highly specific regions of the brain in response to chronic stimulation, functional homodimers of ΔFosB are formed with the potential to uniquely regulate patterns of gene expression and thereby contribute to the complex processes of neural and behavioral adaptation.

Original languageEnglish (US)
Pages (from-to)8360-8372
Number of pages13
JournalBiochemistry
Volume46
Issue number28
DOIs
StatePublished - Jul 17 2007
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry

Fingerprint

Dive into the research topics of 'Dimerization and DNA-binding properties of the transcription factor ΔFosB'. Together they form a unique fingerprint.

Cite this