TY - JOUR
T1 - Cytoplasmic Heme-Binding Protein (HutX) from Vibrio cholerae Is an Intracellular Heme Transport Protein for the Heme-Degrading Enzyme, HutZ
AU - Sekine, Yukari
AU - Tanzawa, Takehito
AU - Tanaka, Yoshikazu
AU - Ishimori, Koichiro
AU - Uchida, Takeshi
N1 - Publisher Copyright:
© 2016 American Chemical Society.
PY - 2016/2/16
Y1 - 2016/2/16
N2 - HutZ is a cytoplasmic heme-binding protein from Vibrio cholerae. Although we have previously identified HutZ as a heme-degrading enzyme [Uchida, T., et al. (2012) Chem. Commun. 48, 6741-6743], the heme transport protein for HutZ remained unknown. To identify the heme transport protein for HutZ, we focused on the heme utilization operon, hutWXZ. To this end, we constructed an expression system for HutX in Escherichia coli and purified it to homogeneity. An absorption spectral analysis demonstrated that HutX binds heme with a 1:1 stoichiometry and a dissociation constant of 7.4 nM. The crystal structure of HutX displays a fold similar to that of the homologous protein, ChuX, from E. coli O157:H7. A structural comparison of HutX and ChuX, and resonance Raman spectra of heme-HutX, suggest that the axial ligand of the ferric heme is Tyr90. The heme bound to HutX is transferred to HutZ with biphasic dissociation kinetics of 8.3 × 10-2 and 1.5 × 10-2 s-1, values distinctly larger than those for transfer from HutX to apomyoglobin. Surface plasmon resonance experiments confirmed that HutX interacts with HutZ with a dissociation constant of ∼400 μM. These results suggest that heme is transferred from HutX to HutZ via a specific protein-protein interaction. Therefore, we can conclude that HutX is a cytoplasmic heme transport protein for HutZ.
AB - HutZ is a cytoplasmic heme-binding protein from Vibrio cholerae. Although we have previously identified HutZ as a heme-degrading enzyme [Uchida, T., et al. (2012) Chem. Commun. 48, 6741-6743], the heme transport protein for HutZ remained unknown. To identify the heme transport protein for HutZ, we focused on the heme utilization operon, hutWXZ. To this end, we constructed an expression system for HutX in Escherichia coli and purified it to homogeneity. An absorption spectral analysis demonstrated that HutX binds heme with a 1:1 stoichiometry and a dissociation constant of 7.4 nM. The crystal structure of HutX displays a fold similar to that of the homologous protein, ChuX, from E. coli O157:H7. A structural comparison of HutX and ChuX, and resonance Raman spectra of heme-HutX, suggest that the axial ligand of the ferric heme is Tyr90. The heme bound to HutX is transferred to HutZ with biphasic dissociation kinetics of 8.3 × 10-2 and 1.5 × 10-2 s-1, values distinctly larger than those for transfer from HutX to apomyoglobin. Surface plasmon resonance experiments confirmed that HutX interacts with HutZ with a dissociation constant of ∼400 μM. These results suggest that heme is transferred from HutX to HutZ via a specific protein-protein interaction. Therefore, we can conclude that HutX is a cytoplasmic heme transport protein for HutZ.
UR - http://www.scopus.com/inward/record.url?scp=84958818194&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84958818194&partnerID=8YFLogxK
U2 - 10.1021/acs.biochem.5b01273
DO - 10.1021/acs.biochem.5b01273
M3 - Article
C2 - 26807477
AN - SCOPUS:84958818194
SN - 0006-2960
VL - 55
SP - 884
EP - 893
JO - Biochemistry
JF - Biochemistry
IS - 6
ER -