TY - JOUR
T1 - Covalent binding of phenytoin to protein and modulation of phenytoin metabolism by thiols in A/J mouse liver microsomes
AU - Roy, D.
AU - Snodgrass, W. R.
PY - 1990
Y1 - 1990
N2 - The role of thiols (nonprotein and protein) in the metabolic activation of phenytoin was examined. In vitro phenytoin covalent binding and metabolite formation were determined in hepatic microsomes from A/J mice. Covalent binding of a phenytoin-reactive intermediate to microsomal protein was linear with respect to time, protein concentration and phenytoin concentration. Covalent binding was inhibited by inhibitors of cytochrome P-450. Inducers of cytochrome P-450 enhanced phenytoin covalent binding as follows: phenobarbital > 3-methylcholanthrene > saline-treated controls. Low molecular weight thiols (GSH, cysteine and cysteamine), a thiol generator (methylthiazoldine carboxylate), and thiol modifying agents (N-ethylmaleimide, mercuric chloride and diamide) significantly inhibited covalent binding. Amino acids other than cysteine did not decrease the covalent binding. Formation of the metabolites, para-hydroxyphenytoin and phenytoin dihydrodiol, was greater following preincubation with GSH or cysteine. In summary, protein thiol groups appear to be important sites for in vitro covalent binding of a reactive intermediate of phenytoin. These data suggest glutathione may protect membrane-bound enzymes responsible for phenytoin metabolism from attack by an electrophilic or free radical reactive intermediate of phenytoin and GSH may inactivate a phenytoin-reactive metabolite by formation of a putative glutathione conjugate.
AB - The role of thiols (nonprotein and protein) in the metabolic activation of phenytoin was examined. In vitro phenytoin covalent binding and metabolite formation were determined in hepatic microsomes from A/J mice. Covalent binding of a phenytoin-reactive intermediate to microsomal protein was linear with respect to time, protein concentration and phenytoin concentration. Covalent binding was inhibited by inhibitors of cytochrome P-450. Inducers of cytochrome P-450 enhanced phenytoin covalent binding as follows: phenobarbital > 3-methylcholanthrene > saline-treated controls. Low molecular weight thiols (GSH, cysteine and cysteamine), a thiol generator (methylthiazoldine carboxylate), and thiol modifying agents (N-ethylmaleimide, mercuric chloride and diamide) significantly inhibited covalent binding. Amino acids other than cysteine did not decrease the covalent binding. Formation of the metabolites, para-hydroxyphenytoin and phenytoin dihydrodiol, was greater following preincubation with GSH or cysteine. In summary, protein thiol groups appear to be important sites for in vitro covalent binding of a reactive intermediate of phenytoin. These data suggest glutathione may protect membrane-bound enzymes responsible for phenytoin metabolism from attack by an electrophilic or free radical reactive intermediate of phenytoin and GSH may inactivate a phenytoin-reactive metabolite by formation of a putative glutathione conjugate.
UR - http://www.scopus.com/inward/record.url?scp=0025262246&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0025262246&partnerID=8YFLogxK
M3 - Article
C2 - 2319474
AN - SCOPUS:0025262246
SN - 0022-3565
VL - 252
SP - 895
EP - 900
JO - Journal of Pharmacology and Experimental Therapeutics
JF - Journal of Pharmacology and Experimental Therapeutics
IS - 3
ER -