TY - JOUR
T1 - Comparison of Aptamer-Based and Antibody-Based Assays for Protein Quantification in Chronic Kidney Disease
AU - Lopez-Silva, Carolina
AU - Surapaneni, Aditya
AU - Coresh, Josef
AU - Reiser, Jochen
AU - Parikh, Chirag R.
AU - Obeid, Wassim
AU - Grams, Morgan E.
AU - Chen, Teresa K.
N1 - Publisher Copyright:
© 2022 by the American Society of Nephrology.
PY - 2022/3
Y1 - 2022/3
N2 - Background and objectives Novel aptamer-based technologies can identify >7000 analytes per sample, offering a high-throughput alternative to traditional immunoassays in biomarker discovery. However, the specificity for distinct proteins has not been thoroughly studied in the context of CKD. Design, setting, participants, & measurements We assessed the use of SOMAscan, an aptamer-based technology, for the quantification of eight immune activation biomarkers and cystatin C among 498 African American Study of Kidney Disease and Hypertension (AASK) participants using immunoassays as the gold standard. We evaluated correlations of serum proteins as measured by SOMAscan versus immunoassays with each other and with iothalamate-measured GFR. We then compared associations between proteins measurement with risks of incident kidney failure and all-cause mortality. Results Six biomarkers (IL-8, soluble TNF receptor superfamily member 1B [TNFRSF1B], cystatin C, soluble TNF receptor superfamily member 1A [TNFRSF1A], IL-6, and soluble urokinase-type plasminogen activator receptor [suPAR]) had non-negligible correlations (r=0.94, 0.93, 0.89, 0.85, 0.46, and 0.23, respectively) between SOMAscan and immunoassay measurements, and three (IL-10, IFN-γ, and TNF-α) were uncorrelated (r=0.08, 0.07, and 0.02, respectively). Of the six biomarkers with non-negligible correlations, TNFRSF1B, cystatin C, TNFRSF1A, and suPAR were negatively correlated with measured GFR and associated with higher risk of kidney failure. IL-8, TNFRSF1B, cystatin C, TNFRSF1A, and suPAR were associated with a higher risk of mortality via both methods. On average, immunoassay measurements were more strongly associated with adverse outcomes than their SOMAscan counterparts. Conclusions SOMAscan is an efficient and relatively reliable technique for quantifying IL-8, TNFRSF1B, cystatin C, and TNFRSF1A in CKD and detecting their potential associations with clinical outcomes.
AB - Background and objectives Novel aptamer-based technologies can identify >7000 analytes per sample, offering a high-throughput alternative to traditional immunoassays in biomarker discovery. However, the specificity for distinct proteins has not been thoroughly studied in the context of CKD. Design, setting, participants, & measurements We assessed the use of SOMAscan, an aptamer-based technology, for the quantification of eight immune activation biomarkers and cystatin C among 498 African American Study of Kidney Disease and Hypertension (AASK) participants using immunoassays as the gold standard. We evaluated correlations of serum proteins as measured by SOMAscan versus immunoassays with each other and with iothalamate-measured GFR. We then compared associations between proteins measurement with risks of incident kidney failure and all-cause mortality. Results Six biomarkers (IL-8, soluble TNF receptor superfamily member 1B [TNFRSF1B], cystatin C, soluble TNF receptor superfamily member 1A [TNFRSF1A], IL-6, and soluble urokinase-type plasminogen activator receptor [suPAR]) had non-negligible correlations (r=0.94, 0.93, 0.89, 0.85, 0.46, and 0.23, respectively) between SOMAscan and immunoassay measurements, and three (IL-10, IFN-γ, and TNF-α) were uncorrelated (r=0.08, 0.07, and 0.02, respectively). Of the six biomarkers with non-negligible correlations, TNFRSF1B, cystatin C, TNFRSF1A, and suPAR were negatively correlated with measured GFR and associated with higher risk of kidney failure. IL-8, TNFRSF1B, cystatin C, TNFRSF1A, and suPAR were associated with a higher risk of mortality via both methods. On average, immunoassay measurements were more strongly associated with adverse outcomes than their SOMAscan counterparts. Conclusions SOMAscan is an efficient and relatively reliable technique for quantifying IL-8, TNFRSF1B, cystatin C, and TNFRSF1A in CKD and detecting their potential associations with clinical outcomes.
UR - http://www.scopus.com/inward/record.url?scp=85125964698&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85125964698&partnerID=8YFLogxK
U2 - 10.2215/CJN.11700921
DO - 10.2215/CJN.11700921
M3 - Article
C2 - 35197258
AN - SCOPUS:85125964698
SN - 1555-9041
VL - 17
SP - 350
EP - 360
JO - Clinical Journal of the American Society of Nephrology
JF - Clinical Journal of the American Society of Nephrology
IS - 3
ER -