Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells

Yow Jiun Jeng, Mikhail Kochukov, Cheryl S. Watson

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

Background: Xenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefore, we used quantitative medium-throughput screening assays to measure the effects of physiologic estrogens in combination with these xenoestrogens. Methods: We studied the effects of low concentrations of endogenous estrogens (estradiol, estriol, and estrone) at 10 pM (representing pre-development levels), and 1 nM (representing higher cycle-dependent and pregnancy levels) in combinations with the same levels of xenoestrogens in GH3/B6/F10 pituitary cells. These levels of xenoestrogens represent extremely low contamination levels. We monitored calcium entry into cells using Fura-2 fluorescence imaging of single cells. Prolactin release was measured by radio-immunoassay. Extracellular-regulated kinase (1 and 2) phospho-activations and the levels of three estrogen receptors in the cell membrane (ERα, ERβ, and GPER) were measured using a quantitative plate immunoassay of fixed cells either permeabilized or nonpermeabilized (respectively). Results: All xenoestrogens caused responses at these concentrations, and had disruptive effects on the actions of physiologic estrogens. Xenoestrogens reduced the % of cells that responded to estradiol via calcium channel opening. They also inhibited the activation (phosphorylation) of extracellular-regulated kinases at some concentrations. They either inhibited or enhanced rapid prolactin release, depending upon concentration. These latter two dose-responses were nonmonotonic, a characteristic of nongenomic estrogenic responses. Conclusions: Responses mediated by endogenous estrogens representing different life stages are vulnerable to very low concentrations of these structurally related xenoestrogens. Because of their non-classical dose-responses, they must be studied in detail to pinpoint effective concentrations and the directions of response changes.

Original languageEnglish (US)
Article number61
JournalEnvironmental Health: A Global Access Science Source
Volume9
Issue number1
DOIs
StatePublished - 2010
Externally publishedYes

ASJC Scopus subject areas

  • Public Health, Environmental and Occupational Health
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells'. Together they form a unique fingerprint.

Cite this