TY - JOUR
T1 - cGMP-Dependent Protein Kinase Contributes to Hydrogen Sulfide-Stimulated Vasorelaxation
AU - Bucci, Mariarosaria
AU - Papapetropoulos, Andreas
AU - Vellecco, Valentina
AU - Zhou, Zongmin
AU - Zaid, Altaany
AU - Giannogonas, Panagiotis
AU - Cantalupo, Anna
AU - Dhayade, Sandeep
AU - Karalis, Katia P.
AU - Wang, Rui
AU - Feil, Robert
AU - Cirino, Giuseppe
PY - 2012/12/28
Y1 - 2012/12/28
N2 - A growing body of evidence suggests that hydrogen sulfide (H2S) is a signaling molecule in mammalian cells. In the cardiovascular system, H2S enhances vasodilation and angiogenesis. H2S-induced vasodilation is hypothesized to occur through ATP-sensitive potassium channels (KATP); however, we recently demonstrated that it also increases cGMP levels in tissues. Herein, we studied the involvement of cGMP-dependent protein kinase-I in H2S-induced vasorelaxation. The effect of H2S on vessel tone was studied in phenylephrine-contracted aortic rings with or without endothelium. cGMP levels were determined in cultured cells or isolated vessel by enzyme immunoassay. Pretreatment of aortic rings with sildenafil attenuated NaHS-induced relaxation, confirming previous findings that H2S is a phosphodiesterase inhibitor. In addition, vascular tissue levels of cGMP in cystathionine gamma lyase knockouts were lower than those in wild-type control mice. Treatment of aortic rings with NaHS, a fast releasing H2S donor, enhanced phosphorylation of vasodilator-stimulated phosphoprotein in a time-dependent manner, suggesting that cGMP-dependent protein kinase (PKG) is activated after exposure to H2S. Incubation of aortic rings with a PKG-I inhibitor (DT-2) attenuated NaHS-stimulated relaxation. Interestingly, vasodilatory responses to a slowly releasing H2S donor (GYY 4137) were unaffected by DT-2, suggesting that this donor dilates mouse aorta through PKG-independent pathways. Dilatory responses to NaHS and L-cysteine (a substrate for H2S production) were reduced in vessels of PKG-I knockout mice (PKG-I-/-). Moreover, glibenclamide inhibited NaHS-induced vasorelaxation in vessels from wild-type animals, but not PKG-I-/-, suggesting that there is a cross-talk between KATP and PKG. Our results confirm the role of cGMP in the vascular responses to NaHS and demonstrate that genetic deletion of PKG-I attenuates NaHS and L-cysteine-stimulated vasodilation.
AB - A growing body of evidence suggests that hydrogen sulfide (H2S) is a signaling molecule in mammalian cells. In the cardiovascular system, H2S enhances vasodilation and angiogenesis. H2S-induced vasodilation is hypothesized to occur through ATP-sensitive potassium channels (KATP); however, we recently demonstrated that it also increases cGMP levels in tissues. Herein, we studied the involvement of cGMP-dependent protein kinase-I in H2S-induced vasorelaxation. The effect of H2S on vessel tone was studied in phenylephrine-contracted aortic rings with or without endothelium. cGMP levels were determined in cultured cells or isolated vessel by enzyme immunoassay. Pretreatment of aortic rings with sildenafil attenuated NaHS-induced relaxation, confirming previous findings that H2S is a phosphodiesterase inhibitor. In addition, vascular tissue levels of cGMP in cystathionine gamma lyase knockouts were lower than those in wild-type control mice. Treatment of aortic rings with NaHS, a fast releasing H2S donor, enhanced phosphorylation of vasodilator-stimulated phosphoprotein in a time-dependent manner, suggesting that cGMP-dependent protein kinase (PKG) is activated after exposure to H2S. Incubation of aortic rings with a PKG-I inhibitor (DT-2) attenuated NaHS-stimulated relaxation. Interestingly, vasodilatory responses to a slowly releasing H2S donor (GYY 4137) were unaffected by DT-2, suggesting that this donor dilates mouse aorta through PKG-independent pathways. Dilatory responses to NaHS and L-cysteine (a substrate for H2S production) were reduced in vessels of PKG-I knockout mice (PKG-I-/-). Moreover, glibenclamide inhibited NaHS-induced vasorelaxation in vessels from wild-type animals, but not PKG-I-/-, suggesting that there is a cross-talk between KATP and PKG. Our results confirm the role of cGMP in the vascular responses to NaHS and demonstrate that genetic deletion of PKG-I attenuates NaHS and L-cysteine-stimulated vasodilation.
UR - http://www.scopus.com/inward/record.url?scp=84871703163&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84871703163&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0053319
DO - 10.1371/journal.pone.0053319
M3 - Article
C2 - 23285278
AN - SCOPUS:84871703163
SN - 1932-6203
VL - 7
JO - PloS one
JF - PloS one
IS - 12
M1 - e53319
ER -