TY - JOUR
T1 - Cerebral perfusion during canine hypothermic cardiopulmonary bypass
T2 - Effect of arterial carbon dioxide tension
AU - Johnston, William E.
AU - Vinten-Johansen, Jakob
AU - DeWitt, Douglas S.
AU - O'Steen, W. Keith
AU - Stump, David A.
AU - Prough, Donald S.
N1 - Funding Information:
Supported in part by grants R29-40395 (Dr Johnston), ROI-36377 (Dr Vinten-Johansen), and RO1-33869 (Dr Prough) from the National Institutes of Health. We express our sincere appreciation for the statistical analysis by Doug Case, PhD, the secretarial assistance of Kim Barnes, and the editorial assistance of Faith McLellan.
PY - 1991/9
Y1 - 1991/9
N2 - Cerebral blood flow (radioactive microspheres), intracranial pressure (subdural bolt), and retinal histopathology were examined in 20 dogs undergoing 150 minutes of hypothermic (28 °C) cardiopulmonary bypass to compare alpha-stat (arterial carbon dioxide tension, 40 ± 1 mm Hg; n = 10) and pH-stat (arterial carbon dioxide tension, 61 ± 1 mm Hg; n = 10) techniques of arterial carbon dioxide tension management. Pump flow (80 mL · kg-1 · min-1), mean aortic pressure (78 ± 2 mm Hg), and hemoglobin level (87 ± 3 g/L [8.7 ± 0.3 g/dL]) were maintained constant. During bypass, intracranial pressure progressively increased in the alpha-stat group from 6.0 ± 1.0 to 13.9 ± 1.8 mm Hg (p < 0.05) and in the pH-stat group from 7.7 ± 1.1 to 14.7 ± 1.4 mm Hg (p < 0.05), although there was no evidence of loss of intracranial compliance or intracranial edema formation as assessed by brain water content. With cooling, cerebral blood flow decreased by 56% to 62% in the alpha-stat group (p < 0.05) and by 48% to 56% in the pH-stat group (p < 0.05). However, 30 minutes after rewarming to 37 °C, cerebral blood flow in both groups failed to increase and remained significantly depressed compared with baseline values. Both groups showed similar amounts of ischemic retinal damage, with degeneration of bipolar cells found in the inner nuclear layer in 67% of animals. We conclude that, independent of the arterial carbon dioxide tension management technique, (1) cerebral perfusion decreases comparably during prolonged hypothermic bypass, (2) intracranial pressure increases progressively, (3) ischemic damage to retinal cells occurs despite maintenance of aortic pressure and flow, and (4) a significant reduction in cerebral perfusion persists after rewarming.
AB - Cerebral blood flow (radioactive microspheres), intracranial pressure (subdural bolt), and retinal histopathology were examined in 20 dogs undergoing 150 minutes of hypothermic (28 °C) cardiopulmonary bypass to compare alpha-stat (arterial carbon dioxide tension, 40 ± 1 mm Hg; n = 10) and pH-stat (arterial carbon dioxide tension, 61 ± 1 mm Hg; n = 10) techniques of arterial carbon dioxide tension management. Pump flow (80 mL · kg-1 · min-1), mean aortic pressure (78 ± 2 mm Hg), and hemoglobin level (87 ± 3 g/L [8.7 ± 0.3 g/dL]) were maintained constant. During bypass, intracranial pressure progressively increased in the alpha-stat group from 6.0 ± 1.0 to 13.9 ± 1.8 mm Hg (p < 0.05) and in the pH-stat group from 7.7 ± 1.1 to 14.7 ± 1.4 mm Hg (p < 0.05), although there was no evidence of loss of intracranial compliance or intracranial edema formation as assessed by brain water content. With cooling, cerebral blood flow decreased by 56% to 62% in the alpha-stat group (p < 0.05) and by 48% to 56% in the pH-stat group (p < 0.05). However, 30 minutes after rewarming to 37 °C, cerebral blood flow in both groups failed to increase and remained significantly depressed compared with baseline values. Both groups showed similar amounts of ischemic retinal damage, with degeneration of bipolar cells found in the inner nuclear layer in 67% of animals. We conclude that, independent of the arterial carbon dioxide tension management technique, (1) cerebral perfusion decreases comparably during prolonged hypothermic bypass, (2) intracranial pressure increases progressively, (3) ischemic damage to retinal cells occurs despite maintenance of aortic pressure and flow, and (4) a significant reduction in cerebral perfusion persists after rewarming.
UR - http://www.scopus.com/inward/record.url?scp=0025880706&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0025880706&partnerID=8YFLogxK
U2 - 10.1016/0003-4975(91)90909-A
DO - 10.1016/0003-4975(91)90909-A
M3 - Article
C2 - 1910323
AN - SCOPUS:0025880706
SN - 0003-4975
VL - 52
SP - 479
EP - 489
JO - The Annals of Thoracic Surgery
JF - The Annals of Thoracic Surgery
IS - 3
ER -