TY - JOUR
T1 - Cause-and-effect relationships between motilin and migrating myoelectric complexes
AU - Sarna, S.
AU - Chey, W. Y.
AU - Condon, R. E.
PY - 1983
Y1 - 1983
N2 - We investigated the cause-and-effect relationship betweeb plasma motilin levels and migrating myoelectric complexes (MMCs). Each dog was implanted with set of eight bipolar electrodes on the small intestine. Premature phase IIIs were initiated by morphine bolus injections. Plasma samples were assayed for motilin and gastrin. All spontaneous and morphine-initiated phase IIIs were associated with peaks of plasma motilin, which always occurred after phase IIIs had started in the proximal duodenum. The plasma motilin level decreased consistently during phase I and started to increase again only after phase II had started in the duodenum. Either a meal or somatostatin infusion disrupted MMC cycling, but morphine boluses overcame this disruption and initiated phase IIIs that propagated distally. The phase IIIs thus initiated were associated with peaks in plasma motilin levels. In contrast, bolus injections of motilin did not initiate phase IIIs during the fed state of during somatostatin infusion. Our findings suggest that endogenous motilin does not initiate spontaneous MMCs. Instead, MMC contractions release motilin. The physiological rule of motilin, thus released, may be to act as an endocrine agent to coordinate secretory and motor events with the start of phase III activity in the upper small intestine.
AB - We investigated the cause-and-effect relationship betweeb plasma motilin levels and migrating myoelectric complexes (MMCs). Each dog was implanted with set of eight bipolar electrodes on the small intestine. Premature phase IIIs were initiated by morphine bolus injections. Plasma samples were assayed for motilin and gastrin. All spontaneous and morphine-initiated phase IIIs were associated with peaks of plasma motilin, which always occurred after phase IIIs had started in the proximal duodenum. The plasma motilin level decreased consistently during phase I and started to increase again only after phase II had started in the duodenum. Either a meal or somatostatin infusion disrupted MMC cycling, but morphine boluses overcame this disruption and initiated phase IIIs that propagated distally. The phase IIIs thus initiated were associated with peaks in plasma motilin levels. In contrast, bolus injections of motilin did not initiate phase IIIs during the fed state of during somatostatin infusion. Our findings suggest that endogenous motilin does not initiate spontaneous MMCs. Instead, MMC contractions release motilin. The physiological rule of motilin, thus released, may be to act as an endocrine agent to coordinate secretory and motor events with the start of phase III activity in the upper small intestine.
UR - http://www.scopus.com/inward/record.url?scp=0020803775&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0020803775&partnerID=8YFLogxK
U2 - 10.1152/ajpgi.1983.245.2.g277
DO - 10.1152/ajpgi.1983.245.2.g277
M3 - Article
C2 - 6192727
AN - SCOPUS:0020803775
SN - 0193-1857
VL - 8
SP - G277-G284
JO - American Journal of Physiology - Gastrointestinal and Liver Physiology
JF - American Journal of Physiology - Gastrointestinal and Liver Physiology
IS - 2
ER -