Abstract
1. The anticonvulsant properties of 2-chloroadenosine (CADO) in the basolateral amygdala rely on the activation of adenosine-specific heptahelical receptors. We have utilized whole-cell voltage-clamp electrophysiology to examine the modulatory effects of CADO and other adenosine receptor agonists on voltage-gated calcium channels in dissociated basolateral amygdala neurons. 2. CADO, adenosine, and the A1 subtype-selective agonists N6-(L-2-Phenylisopropyl)adenosine (R-PIA) and 2-chloro-N6-cyclopentyladenosine (CCPA) reversibly modulated whole cell Ba2+ currents in a concentration-dependent fashion. CADO inhibition of barium currents was also sensitive to the A1 antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX). 3. The A2A-selective agonist 4-[2-[[6-Amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl] amino]ethyl]benzenepropanoic acid (CGS21680) was without effect. 4. CADO inhibition was predominantly voltage-dependent and sensitive to the sulphydryl-modifying reagent N-ethylmaleimide, implicating a membrane-delimited. Gi/o-coupled signal transduction pathway in the channel regulation. 5. Using Ca2+ channel subtype-selective antagonists. CADO inhibition appeared to target multiple channel subtypes, with the inhibition of ω-conotoxin GVIA-sensitive calcium channels being more prominent. 6. Our results indicate that the anti-convulsant effects CADO in the basolateral amygdala may be mediated, in part, by the A1 receptor-dependent inhibition of voltage gated calcium channels.
Original language | English (US) |
---|---|
Pages (from-to) | 879-888 |
Number of pages | 10 |
Journal | British Journal of Pharmacology |
Volume | 132 |
Issue number | 4 |
DOIs | |
State | Published - 2001 |
Externally published | Yes |
Keywords
- Basolateral amygdala
- Calcium channel
- N-ethylmaleimide
- Nifedipine
- ω-agatoxin IVA
- ω-conotoxin GVIA
ASJC Scopus subject areas
- Pharmacology