TY - JOUR
T1 - ASK Family Kinases Are Required for Optimal NLRP3 Inflammasome Priming
AU - Place, David E.
AU - Samir, Parimal
AU - Karki, Rajendra
AU - Briard, Benoit
AU - Vogel, Peter
AU - Kanneganti, Thirumala Devi
N1 - Publisher Copyright:
© 2018 American Society for Investigative Pathology
PY - 2018/4
Y1 - 2018/4
N2 - Activation of the multimeric inflammasome complex leads to inflammatory responses to biotic and abiotic triggers. The inflammasome sensor, Nod-like receptor family pyrin domain containing 3 (NLRP3), is activated by a range of stimuli and is tightly regulated to restrict excessive inflammation. Because NLRP3 responds broadly to cellular insults and regulates cell death similar to the stress-activated apoptosis signal-regulating kinases 1 and 2 (ASK1/2), we hypothesized that ASK1/2 may regulate NLRP3 activity. Although essential for mediating NLRP3 inflammasome activation, ASK1/2 were not required for NLRC4 or absent in melanoma 2 inflammasome activation. ASK1/2 was required for NLRP3 up-regulation after lipopolysaccharide treatment in primary bone marrow–derived macrophages and lung fibroblasts as well as during infection with Burkholderia thailandensis and influenza virus. Consistent with reduced NLRP3 expression in response to B. thailandensis, caspase-1 cleavage and cell death were reduced in infected bone marrow–derived macrophages, and mice lacking ASK1/2 were resistant to Burkholderia intranasal infection. Single knockouts of either ASK1 or ASK2 showed a partial role for both ASK1 and ASK2 in NLRP3 up-regulation in response to lipopolysaccharide or B. thailandensis, but ASK2 was required primarily to mediate lethal pathology during intranasal infection in vivo. Our findings identify the ASK1/2 complex as a regulator of NLRP3 activation and highlight a larger role for ASK2 in lung infection during B. thailandensis infection.
AB - Activation of the multimeric inflammasome complex leads to inflammatory responses to biotic and abiotic triggers. The inflammasome sensor, Nod-like receptor family pyrin domain containing 3 (NLRP3), is activated by a range of stimuli and is tightly regulated to restrict excessive inflammation. Because NLRP3 responds broadly to cellular insults and regulates cell death similar to the stress-activated apoptosis signal-regulating kinases 1 and 2 (ASK1/2), we hypothesized that ASK1/2 may regulate NLRP3 activity. Although essential for mediating NLRP3 inflammasome activation, ASK1/2 were not required for NLRC4 or absent in melanoma 2 inflammasome activation. ASK1/2 was required for NLRP3 up-regulation after lipopolysaccharide treatment in primary bone marrow–derived macrophages and lung fibroblasts as well as during infection with Burkholderia thailandensis and influenza virus. Consistent with reduced NLRP3 expression in response to B. thailandensis, caspase-1 cleavage and cell death were reduced in infected bone marrow–derived macrophages, and mice lacking ASK1/2 were resistant to Burkholderia intranasal infection. Single knockouts of either ASK1 or ASK2 showed a partial role for both ASK1 and ASK2 in NLRP3 up-regulation in response to lipopolysaccharide or B. thailandensis, but ASK2 was required primarily to mediate lethal pathology during intranasal infection in vivo. Our findings identify the ASK1/2 complex as a regulator of NLRP3 activation and highlight a larger role for ASK2 in lung infection during B. thailandensis infection.
UR - http://www.scopus.com/inward/record.url?scp=85043992730&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85043992730&partnerID=8YFLogxK
U2 - 10.1016/j.ajpath.2017.12.006
DO - 10.1016/j.ajpath.2017.12.006
M3 - Article
C2 - 29353059
AN - SCOPUS:85043992730
SN - 0002-9440
VL - 188
SP - 1021
EP - 1030
JO - American Journal of Pathology
JF - American Journal of Pathology
IS - 4
ER -