TY - JOUR
T1 - An analysis of the areas occupied by vessels in the ocular surface of diabetic patients
T2 - An application of a nonparametric tilted additive model
AU - Boroumand, Farzaneh
AU - Shakeri, Mohammad Taghi
AU - Banaee, Touka
AU - Pourreza, Hamidreza
AU - Doosti, Hassan
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/4/1
Y1 - 2021/4/1
N2 - (1) Background: As diabetes melllitus (DM) can affect the microvasculature, this study evaluates different clinical parameters and the vascular density of ocular surface microvasculature in diabetic patients. (2) Methods: In this cross-sectional study, red-free conjunctival photographs of diabetic individuals aged 30–60 were taken under defined conditions and analyzed using a Radon transform-based algorithm for vascular segmentation. The Areas Occupied by Vessels (AOV) images of different diameters were calculated. To establish the sum of AOV of different sized vessels. We adopt a novel approach to investigate the association between clinical characteristics as the predictors and AOV as the outcome, that is Tilted Additive Model (TAM). We use a tilted nonparametric regression estimator to estimate the nonlinear effect of predictors on the outcome in the additive setting for the first time. (3) Results: The results show Age (p-value = 0.019) and Mean Arterial Pressure (MAP) have a significant linear effect on AOV (p-value = 0.034). We also find a nonlinear association between Body Mass Index (BMI), daily Urinary Protein Excretion (UPE), Hemoglobin A1C, and Blood Urea Nitrogen (BUN) with AOV. (4) Conclusions: As many predictors do not have a linear relationship with the outcome, we conclude that the TAM will help better elucidate the effect of the different predictors. The highest level of AOV can be seen at Hemoglobin A1C of 9% and AOV increases when the daily UPE exceeds 600 mg. These effects need to be considered in future studies of ocular surface vessels of diabetic patients.
AB - (1) Background: As diabetes melllitus (DM) can affect the microvasculature, this study evaluates different clinical parameters and the vascular density of ocular surface microvasculature in diabetic patients. (2) Methods: In this cross-sectional study, red-free conjunctival photographs of diabetic individuals aged 30–60 were taken under defined conditions and analyzed using a Radon transform-based algorithm for vascular segmentation. The Areas Occupied by Vessels (AOV) images of different diameters were calculated. To establish the sum of AOV of different sized vessels. We adopt a novel approach to investigate the association between clinical characteristics as the predictors and AOV as the outcome, that is Tilted Additive Model (TAM). We use a tilted nonparametric regression estimator to estimate the nonlinear effect of predictors on the outcome in the additive setting for the first time. (3) Results: The results show Age (p-value = 0.019) and Mean Arterial Pressure (MAP) have a significant linear effect on AOV (p-value = 0.034). We also find a nonlinear association between Body Mass Index (BMI), daily Urinary Protein Excretion (UPE), Hemoglobin A1C, and Blood Urea Nitrogen (BUN) with AOV. (4) Conclusions: As many predictors do not have a linear relationship with the outcome, we conclude that the TAM will help better elucidate the effect of the different predictors. The highest level of AOV can be seen at Hemoglobin A1C of 9% and AOV increases when the daily UPE exceeds 600 mg. These effects need to be considered in future studies of ocular surface vessels of diabetic patients.
KW - Area occupied by vessels
KW - Bootstrap confidence band
KW - Diabetes
KW - Generalized additive model
KW - Metabolic syndrome
KW - Nonparametric regression
KW - Ocular surface
KW - Tilted estimator
UR - http://www.scopus.com/inward/record.url?scp=85103516250&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103516250&partnerID=8YFLogxK
U2 - 10.3390/ijerph18073735
DO - 10.3390/ijerph18073735
M3 - Article
C2 - 33918420
AN - SCOPUS:85103516250
SN - 1661-7827
VL - 18
JO - International Journal of Environmental Research and Public Health
JF - International Journal of Environmental Research and Public Health
IS - 7
M1 - 3735
ER -