Abstract
Tobacco mosaic virus (TMV) coat protein (CP) in absence of RNA self-assembles into several different structures depending on pH and ionic strength. Transgenic plants that produce self-assembling CP are resistant to TMV infection, a phenomenon referred to as coat-protein-mediated resistance (CP-MR). The mutant CP Thr42Trp (CPT42W) produces enhanced CP-MR compared to wild-type CP. To establish the relationship between the formation of 20S CP aggregates and CP-MR, virus-like particles (VLPs) produced by TMV variants that yield high levels of CP-MR were characterized. We demonstrate that non-helical structures are found in VLPs formed in vivo by CPT42W but not by wild-type CP and suggest that the mutation shifts the intracellular equilibrium of aggregates from low to higher proportions of non-helical 20S aggregates. A similar shift in equilibrium of aggregates was observed with CPD77R, another mutant that confers high level of CP-MR. The mutant CPD50R confers a level of CP-MR similar to wild-type CP and aggregates in a manner similar to wild-type CP. We conclude that increased CP-MR is correlated with a shift in intracellular equilibrium of CP aggregates, including aggregates that interfere with virus replication.
Original language | English (US) |
---|---|
Pages (from-to) | 98-106 |
Number of pages | 9 |
Journal | Virology |
Volume | 366 |
Issue number | 1 |
DOIs | |
State | Published - Sep 15 2007 |
Externally published | Yes |
Keywords
- 20S
- CP aggregates
- CP mutants
- CP-MR mechanism
- Stacked disk
- TMV
ASJC Scopus subject areas
- Virology