TY - JOUR
T1 - Adenosine and inosine exert cytoprotective effects in an in vitro model of liver ischemia-reperfusion injury
AU - Módis, Katalin
AU - Gero, Domokos
AU - Stangl, Rita
AU - Rosero, Olivér
AU - Szijártó, Attila
AU - Lotz, Gábor
AU - Mohácsik, Petra
AU - Szoleczky, Petra
AU - Coletta, Ciro
AU - Szabó, Csaba
PY - 2013/2
Y1 - 2013/2
N2 - Liver ischemia represents a common clinical problem. In the present study, using an in vitro model of hepatic ischemia-reperfusion injury, we evaluated the potential cyto-protective effect of the purine metabolites, such as adenosine and inosine, and studied the mode of their pharmacological actions. The human hepatocellular carcinoma-derived cell line HepG2 was subjected to combined oxygen-glucose deprivation (COGD; 0-14-24 h), followed by re-oxygenation (0-4-24 h). Adenosine or inosine (300-1,000 μM) were applied in pretreatment. Cell viability and cytotoxicity were measured by the 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide and lactate dehydrogenase methods, respectively. The results showed that both adenosine and inosine exerted cytoprotective effects, and these effects were not related to receptor-mediated actions, since they were not prevented by selective adenosine receptor antagonists. On the other hand, the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA, 10 μM) markedly and almost fully reversed the protective effect of adenosine during COGD, while it did not influence the cyto-protective effect of inosine in the same assay conditions. These results suggest that the cytoprotective effects are related to intracellular actions, and, in the case of adenosine also involve intracellular conversion to inosine. The likely interpretation of these findings is that inosine serves as an alternative source of energy to produce ATP during hypoxic conditions. The protective effects are also partially dependent on adenosine kinase, as the inhibitor 4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin-3-yl) pyrido[2,3-d]pyrimidine, 2HCl (ABT 702, 30 μM) significantly reversed the protective effect of both adenosine and inosine during hypoxia and re-oxygen-ation. Collectively, the current results support the view that during hypoxia, adenosine and inosine exert cytoprotective effects via receptor-independent, intracellular modes of action, which, in part, depend on the restoration of cellular bioenergetics. The present study supports the view that testing of inosine for protection against various forms of warm and cold liver ischemia is relevant.
AB - Liver ischemia represents a common clinical problem. In the present study, using an in vitro model of hepatic ischemia-reperfusion injury, we evaluated the potential cyto-protective effect of the purine metabolites, such as adenosine and inosine, and studied the mode of their pharmacological actions. The human hepatocellular carcinoma-derived cell line HepG2 was subjected to combined oxygen-glucose deprivation (COGD; 0-14-24 h), followed by re-oxygenation (0-4-24 h). Adenosine or inosine (300-1,000 μM) were applied in pretreatment. Cell viability and cytotoxicity were measured by the 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide and lactate dehydrogenase methods, respectively. The results showed that both adenosine and inosine exerted cytoprotective effects, and these effects were not related to receptor-mediated actions, since they were not prevented by selective adenosine receptor antagonists. On the other hand, the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA, 10 μM) markedly and almost fully reversed the protective effect of adenosine during COGD, while it did not influence the cyto-protective effect of inosine in the same assay conditions. These results suggest that the cytoprotective effects are related to intracellular actions, and, in the case of adenosine also involve intracellular conversion to inosine. The likely interpretation of these findings is that inosine serves as an alternative source of energy to produce ATP during hypoxic conditions. The protective effects are also partially dependent on adenosine kinase, as the inhibitor 4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin-3-yl) pyrido[2,3-d]pyrimidine, 2HCl (ABT 702, 30 μM) significantly reversed the protective effect of both adenosine and inosine during hypoxia and re-oxygen-ation. Collectively, the current results support the view that during hypoxia, adenosine and inosine exert cytoprotective effects via receptor-independent, intracellular modes of action, which, in part, depend on the restoration of cellular bioenergetics. The present study supports the view that testing of inosine for protection against various forms of warm and cold liver ischemia is relevant.
KW - Adenosine
KW - Cytoprotection
KW - Hepatocytes
KW - Inosine
KW - Ischemia-reperfusion
KW - Liver
UR - http://www.scopus.com/inward/record.url?scp=84873106319&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84873106319&partnerID=8YFLogxK
U2 - 10.3892/ijmm.2012.1203
DO - 10.3892/ijmm.2012.1203
M3 - Article
C2 - 23232950
AN - SCOPUS:84873106319
SN - 1107-3756
VL - 31
SP - 437
EP - 446
JO - International journal of molecular medicine
JF - International journal of molecular medicine
IS - 2
ER -