TY - JOUR
T1 - Active absorption of NH4+ by rat medullary thick ascending limb
T2 - Inhibition by potassium
AU - Good, D. W.
PY - 1988
Y1 - 1988
N2 - These experiments were designed to determine the relative contributions of active NH4+ transport and voltage-driven NH4+ diffusion to direct NH4+ absorption by the medullary thick ascending limb of the rat. Medullary thick ascending limbs were perfused in vitro with solutions containing 25 mM HCO3 and 4 mM total ammonia. Under steady-state conditions, the lumen-positive transepithelial voltage (V(T)) was not sufficient to account for the observed decrease in lumen NH4+ concentration, consistent with active absorption of NH4+. Flux calculations based on V(T) and measured NH4+ permeability (6 x 10-5 cm/s) indicate that the majority (at least 65%) of total ammonia absorption is due to active transport of NH4+. The remainder of NH4+ absorption can be accounted for by voltage-driven diffusion. Increasing the potassium concentration from 4 to 24 mM in perfusate and bath markedly inhibited total ammonia absorption but did not affect V(T), NH4+ permeability, or HCO3 absorption. These results are consistent with inhibition of the active component of NH4+ absorption by potassium. The active NH4+ absorption is likely mediated by cotransport of Na+, NH4+, and Cl- across the apical cell membrane. Inhibition of active NH4+ absorption by an increase in potassium concentration may be due, in part, to competition between NH4+ and K+ for a common binding site on the Na+-K+-2Cl- cotransport system.
AB - These experiments were designed to determine the relative contributions of active NH4+ transport and voltage-driven NH4+ diffusion to direct NH4+ absorption by the medullary thick ascending limb of the rat. Medullary thick ascending limbs were perfused in vitro with solutions containing 25 mM HCO3 and 4 mM total ammonia. Under steady-state conditions, the lumen-positive transepithelial voltage (V(T)) was not sufficient to account for the observed decrease in lumen NH4+ concentration, consistent with active absorption of NH4+. Flux calculations based on V(T) and measured NH4+ permeability (6 x 10-5 cm/s) indicate that the majority (at least 65%) of total ammonia absorption is due to active transport of NH4+. The remainder of NH4+ absorption can be accounted for by voltage-driven diffusion. Increasing the potassium concentration from 4 to 24 mM in perfusate and bath markedly inhibited total ammonia absorption but did not affect V(T), NH4+ permeability, or HCO3 absorption. These results are consistent with inhibition of the active component of NH4+ absorption by potassium. The active NH4+ absorption is likely mediated by cotransport of Na+, NH4+, and Cl- across the apical cell membrane. Inhibition of active NH4+ absorption by an increase in potassium concentration may be due, in part, to competition between NH4+ and K+ for a common binding site on the Na+-K+-2Cl- cotransport system.
UR - http://www.scopus.com/inward/record.url?scp=0023740459&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0023740459&partnerID=8YFLogxK
U2 - 10.1152/ajprenal.1988.255.1.f78
DO - 10.1152/ajprenal.1988.255.1.f78
M3 - Article
C2 - 3134821
AN - SCOPUS:0023740459
SN - 0002-9513
VL - 255
SP - F78-F87
JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
IS - 1 (24/1)
ER -