Abstract
Numerous reports suggest a significant role of peripheral galanin (GAL) in pain transmission; however, due to the lack of selective galanin receptor agonists and antagonists, the role of GAL receptors (GalR1-3) in pain transmission remains unclear. In this study, a new agonist, M617, that preferentially binds to GalR1, a GalR2 agonist (AR-M1896), and a GalR2 antagonist (M871) were tested in the periphery to elucidate the role of peripheral GalR1 and GalR2 in nociception. Ipsilateral, but not contralateral, hindpaw injection of M617 reduced capsaicin (CAP)-induced flinching by ∼ 50%, suggesting that GalR1 activation produces anti-nociception. This anti-nociceptive effect was blocked by intraplantar injection of the non-selective GalR antagonist M35. In contrast ipsilateral, but not contralateral, intraplantar injection of GalR2 agonist AR-M1896 enhanced the CAP-induced nociception (1.7-fold). The GalR2 antagonist M871 blocked the pro-nociceptive effect of AR-M1896 in a dose-dependent manner. This antagonist had no effect on nociceptive behaviors induced by CAP alone. The data demonstrate that activation of peripheral GalR1 results in anti-nociception but activation of peripheral GalR2 produces pro-nociception. Thus, the use of these pharmacological tools may help to elucidate the contribution of GalR subtypes in nociceptive processing, identifying potential drug targets for the treatment of peripheral pain.
Original language | English (US) |
---|---|
Pages (from-to) | 273-280 |
Number of pages | 8 |
Journal | Pharmacology Biochemistry and Behavior |
Volume | 85 |
Issue number | 1 |
DOIs | |
State | Published - Sep 2006 |
Keywords
- Anti-nociception
- Capsaicin
- Inflammatory pain
- Primary afferent
- Pro-nociception
ASJC Scopus subject areas
- Biochemistry
- Toxicology
- Pharmacology
- Clinical Biochemistry
- Biological Psychiatry
- Behavioral Neuroscience