TY - JOUR
T1 - Absence of amyloid β oligomers at the postsynapse and regulated synaptic Zn2+in cognitively intact aged individuals with Alzheimer's disease neuropathology
AU - Bjorklund, Nicole L.
AU - Reese, Lindsay C.
AU - Ramanujam, V-M
AU - Ghirardi, Valeria
AU - Woltjer, Randall L.
AU - Taglialatela, Giulio
N1 - Funding Information:
We would like to thank Drs. Ashley Bush (University of Melbourne, Australia) and Harold Sandstead (University of Texas Medical Branch) for critical reading of the manuscript and helpful discussions. We would also like to thank Drs. William Klein and Pascale Lacor at Northwestern University, Chicago, IL, for the generous gift of the NU4 antibody and the Human Nutrition Division, Department of Preventive Medicine and Community Health, UTMB, for the use of the GF-AAS instrument. This work was supported by grants: R01NS059901, Alzheimer’s Association IIRG-90755, and a Mitchell Center Neurodegenerative Center Collaborative Grant (G.T.), NIA P30AG008017 (R.L.W.), T32 ES007254-20 (N.L.B), and F31NS062558 (L.C.R).
PY - 2012/5/28
Y1 - 2012/5/28
N2 - Background: Early cognitive impairment in Alzheimer Disease (AD) is thought to result from the dysfunctional effect of amyloid beta (Aβ) oligomers targeting the synapses. Some individuals, however, escape cognitive decline despite the presence of the neuropathologic features of AD (Aβ plaques and neurofibrillary tangles). We term this group Non-Demented with AD Neuropathology or NDAN. The present study illustrates one putative resistance mechanism involved in NDAN cases which may suggest targets for the effective treatment of AD. Results: Here we describe the localization of Aβ oligomers at the postsynapse in hippocampi from AD cases. Notably, however, we also found that while present in soluble fractions, Aβ oligomers are absent from hippocampal postsynapses in NDAN cases. In addition, levels of phosphorylated (active) CREB, a transcription factor important for synaptic plasticity, are normal in NDAN individuals, suggesting that their synapses are functionally intact. Analysis of Zn2+ showed that levels were increased in both soluble fractions and synaptic vesicles in AD hippocampi, paralleled by a decrease of expression of the synaptic vesicle Zn2+ transporter, ZnT3. Conversely, in NDAN individuals, levels of Zn2+ in soluble fractions were significantly lower than in AD, whereas in synaptic vesicles the levels of Zn2+ were similar to AD, but accompanied by preserved expression of the ZnT3. Conclusions: Taken together, these data illustrate that despite substantial AD neuropathology, Aβ oligomers, and increased synaptic vesicle Zn2+, susceptible brain tissue in these aged NDAN individuals features, as compared to symptomatic AD subjects, significantly lower total Zn2+ levels and no association of Aβ oligomers with the postsynapse, which collectively may promote the maintenance of intact cognitive function.
AB - Background: Early cognitive impairment in Alzheimer Disease (AD) is thought to result from the dysfunctional effect of amyloid beta (Aβ) oligomers targeting the synapses. Some individuals, however, escape cognitive decline despite the presence of the neuropathologic features of AD (Aβ plaques and neurofibrillary tangles). We term this group Non-Demented with AD Neuropathology or NDAN. The present study illustrates one putative resistance mechanism involved in NDAN cases which may suggest targets for the effective treatment of AD. Results: Here we describe the localization of Aβ oligomers at the postsynapse in hippocampi from AD cases. Notably, however, we also found that while present in soluble fractions, Aβ oligomers are absent from hippocampal postsynapses in NDAN cases. In addition, levels of phosphorylated (active) CREB, a transcription factor important for synaptic plasticity, are normal in NDAN individuals, suggesting that their synapses are functionally intact. Analysis of Zn2+ showed that levels were increased in both soluble fractions and synaptic vesicles in AD hippocampi, paralleled by a decrease of expression of the synaptic vesicle Zn2+ transporter, ZnT3. Conversely, in NDAN individuals, levels of Zn2+ in soluble fractions were significantly lower than in AD, whereas in synaptic vesicles the levels of Zn2+ were similar to AD, but accompanied by preserved expression of the ZnT3. Conclusions: Taken together, these data illustrate that despite substantial AD neuropathology, Aβ oligomers, and increased synaptic vesicle Zn2+, susceptible brain tissue in these aged NDAN individuals features, as compared to symptomatic AD subjects, significantly lower total Zn2+ levels and no association of Aβ oligomers with the postsynapse, which collectively may promote the maintenance of intact cognitive function.
KW - Alzheimer's disease
KW - Asymptomatic
KW - Aβ oligomers
KW - Hippocampus
KW - Synaptic vesicle
KW - Zinc
UR - http://www.scopus.com/inward/record.url?scp=84861428833&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84861428833&partnerID=8YFLogxK
U2 - 10.1186/1750-1326-7-23
DO - 10.1186/1750-1326-7-23
M3 - Article
C2 - 22640423
AN - SCOPUS:84861428833
SN - 1750-1326
VL - 7
JO - Molecular Neurodegeneration
JF - Molecular Neurodegeneration
IS - 1
M1 - 23
ER -