TY - JOUR
T1 - A mutational analysis of the polypyrimidine tract of introns
T2 - Effects of sequence differences in pyrimidine tracts on splicing
AU - Roecigno, Robert F.
AU - Weiner, Michael
AU - Garcia-Blanco, Mariano A.
N1 - Copyright:
Copyright 2004 Elsevier B.V., All rights reserved.
PY - 1993/5/25
Y1 - 1993/5/25
N2 - The polypyrimidine (py) tract of introns is required for efficient spliceosome assembly and splicing of pre-mRNAs. A detailed mutational analysis of the py tract of an adenovirus 2 intron was carried out. Utilizing a "precursor in pieces" vector system, it was possible to synthesize py tract mutant pre-mRNAs that were otherwise identical. The mutant pre-mRNAs were analyzed for in vitro splicing, for formation of splicing complexes, and for binding to proteins in the HeLa nuclear extract. Chimeric pre-mRNAs that contained the yeast branch point consensus sequence (UAC-UAAC) and altered py tracts were also analyzed. Mutational analysis showed the following. First, any mutation in the py tract that affected splicing did so by interferring with complex A formation in spliceosome assembly. Second, introduction of purines into the py tract is detrimental only if the length of the tract is shortened and if there is a reduction in the number of consecutive uracil residues. Third, uracil and cytosine do not have equivalent functions in the py tract. Our results with chimeric pre-mRNAs also show that a strong py tract can partially replace a weak branch point sequence and a strong branch point sequence can partially replace a weak py tract. Finally, the one surprising finding obtained when examining protein binding was that a mutant pre-mRNA did not bind to heterogeneous nuclear ribonucleoprotein C proteins and yet spliced close to wild type level.
AB - The polypyrimidine (py) tract of introns is required for efficient spliceosome assembly and splicing of pre-mRNAs. A detailed mutational analysis of the py tract of an adenovirus 2 intron was carried out. Utilizing a "precursor in pieces" vector system, it was possible to synthesize py tract mutant pre-mRNAs that were otherwise identical. The mutant pre-mRNAs were analyzed for in vitro splicing, for formation of splicing complexes, and for binding to proteins in the HeLa nuclear extract. Chimeric pre-mRNAs that contained the yeast branch point consensus sequence (UAC-UAAC) and altered py tracts were also analyzed. Mutational analysis showed the following. First, any mutation in the py tract that affected splicing did so by interferring with complex A formation in spliceosome assembly. Second, introduction of purines into the py tract is detrimental only if the length of the tract is shortened and if there is a reduction in the number of consecutive uracil residues. Third, uracil and cytosine do not have equivalent functions in the py tract. Our results with chimeric pre-mRNAs also show that a strong py tract can partially replace a weak branch point sequence and a strong branch point sequence can partially replace a weak py tract. Finally, the one surprising finding obtained when examining protein binding was that a mutant pre-mRNA did not bind to heterogeneous nuclear ribonucleoprotein C proteins and yet spliced close to wild type level.
UR - http://www.scopus.com/inward/record.url?scp=0027233694&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027233694&partnerID=8YFLogxK
M3 - Article
C2 - 8496178
AN - SCOPUS:0027233694
SN - 0021-9258
VL - 268
SP - 11222
EP - 11229
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 15
ER -