A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models

Chao Shan, Antonio E. Muruato, Bruno T.D. Nunes, Huanle Luo, Xuping Xie, Daniele B.A. Medeiros, Maki Wakamiya, Robert B. Tesh, Alan D. Barrett, Tian Wang, Scott C. Weaver, Pedro F.C. Vasconcelos, Shannan L. Rossi, Pei Yong Shi

Research output: Contribution to journalArticlepeer-review

168 Scopus citations

Abstract

Zika virus (ZIKV) infection of pregnant women can cause a wide range of congenital abnormalities, including microcephaly, in the infant, a condition now collectively known as congenital ZIKV syndrome. A vaccine to prevent or significantly attenuate viremia in pregnant women who are residents of or travelers to epidemic or endemic regions is needed to avert congenital ZIKV syndrome, and might also help to suppress epidemic transmission. Here we report on a live-attenuated vaccine candidate that contains a 10-nucleotide deletion in the 3′ untranslated region of the ZIKV genome (10-del ZIKV). The 10-del ZIKV is highly attenuated, immunogenic, and protective in type 1 interferon receptor-deficient A129 mice. Crucially, a single dose of 10-del ZIKV induced sterilizing immunity with a saturated neutralizing antibody titer, which no longer increased after challenge with an epidemic ZIKV, and completely prevented viremia. The immunized mice also developed a robust T cell response. Intracranial inoculation of 1-d-old immunocompetent CD-1 mice with 1 × 104 infectious focus units (IFU) of 10-del ZIKV caused no mortality, whereas infections with 10 IFU of wild-type ZIKV were lethal. Mechanistically, the attenuated virulence of 10-del ZIKV may be due to decreased viral RNA synthesis and increased sensitivity to type-1-interferon inhibition. The attenuated 10-del ZIKV was incapable of infecting mosquitoes after oral feeding of spiked-blood meals, representing an additional safety feature. Collectively, the safety and efficacy results suggest that further development of this promising, live-attenuated ZIKV vaccine candidate is warranted.

Original languageEnglish (US)
Pages (from-to)763-767
Number of pages5
JournalNature Medicine
Volume23
Issue number6
DOIs
StatePublished - Jun 1 2017

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models'. Together they form a unique fingerprint.

Cite this