8-Oxoguanine DNA glycosylase-1 augments proinflammatory gene expression by facilitating the recruitment of site-specific transcription factors

Xueqing Ba, Attila Bacsi, Jixian Luo, Leopoldo Aguilera-Aguirre, Xianlu Zeng, Zsolt Radak, Allan R. Brasier, Istvan Boldogh

Research output: Contribution to journalArticlepeer-review

62 Scopus citations

Abstract

Among the insidious DNA base lesions, 8-oxo-7,8-dihydroguanine (8-oxoG) is one of the most abundant, a lesion that arises through the attack by reactive oxygen species on guanine, especially when located in cis-regulatory elements. 8-oxoG is repaired by the 8-oxoguanine glycosylase 1 (OGG1)-initiated DNA base excision repair pathway. In this study, we investigated whether 8-oxoG repair by OGG1 in promoter regions is compatible with a prompt gene expression and a host innate immune response. For this purpose, we used a mouse model of airway inflammation, supplemented with cell cultures, chromatin immunoprecipitation, small interfering RNA knockdown, real-time PCR, and comet and reporter transcription assays. Our data show that exposure of cells to TNF-A altered cellular redox, increased the 8-oxoG level in DNA, recruited OGG1 to promoter sequences, and transiently inhibited base excision repair of 8-oxoG. Promoter-Associated OGG1 then enhanced NF-kB/RelA binding to cis-elements and facilitated recruitment of specificity protein 1, transcription initiation factor II-D, and p-RNA polymerase II, resulting in the rapid expression of chemokines/cytokines and inflammatory cell accumulation in mouse airways. Small interfering RNA depletion of OGG1 or prevention of guanine oxidation significantly decreased TNF-A-induced inflammatory responses. Taken together, these results show that nonproductive binding of OGG1 to 8-oxoG in promoter sequences could be an epigenetic mechanism to modulate gene expression for a prompt innate immune response.

Original languageEnglish (US)
Pages (from-to)2384-2394
Number of pages11
JournalJournal of Immunology
Volume192
Issue number5
DOIs
StatePublished - Mar 1 2014

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology

Fingerprint

Dive into the research topics of '8-Oxoguanine DNA glycosylase-1 augments proinflammatory gene expression by facilitating the recruitment of site-specific transcription factors'. Together they form a unique fingerprint.

Cite this